DNA Structure

DNA

- DNA
- a polymer of **deoxyribonucleotides or Polynucleotide**
- found in chromosomes, mitochondria and chloroplasts
- carries the **genetic** information
- Components of a nucleotide
- Nitrogen Base
- Sugar
- Phosphate

Nucleic Acids

- Nucleic acids are polymers
- Monomer---nucleotides
 - Nitrogenous bases
 - Purines
 - Pyrimidines
 - Sugar
 - Ribose
 - Deoxyribose
 - Phosphates
 - +nucleoside=nucleotide

Nucleosides

Sugars in Nucleic Acids

Basic Structure of Pyrimidines & Purines

Nomenclature of Nucleic Acid Components

Base	Nucleoside	Nucleotide	Nucleic acid
Purines			
Adenine	Adenosine	Adenylate	RNA
	Deoxyadenosine	Deoxyadenylate	DNA
Guanine	Guanosine	Guanylate	RNA
	Deoxy guanosine	Deoxyguanylate	DNA

Nomenclature of Nucleic Acid Components

Base	Nucleoside	Nucleotide	Nucleic acid
Pyrimidines			
Cytosine	Cytidine	Cytidylate	RNA
	Deoxycytidine	Deoxycytidylate	DNA
Thymine	Thymidine	Thymidylate	DNA
	(deoxythymidine)	(deoxythymidylate)	
Uracil	Uridine	Uridylate	RNA

Traditionally, a DNA sequence is drawn from 5' to 3' end. A shorthand notation for this sequence is ACGTA

Hydrogen bond

- Hydrogen bond is a chemical bond in which a hydrogen atom of one molecule is attracted to an electronegative atom, especially a nitrogen, oxygen, or fluorine atom, usually of another molecule.
- Note: δ represents partial charges

The secondary structure of DNA

- Two anti-parallel polynucleotide chains wound around the same axis.
- Sugar-phosphate chains wrap around the periphery.
- Bases (A, T, C and G) occupy the core, forming complementary A · T and G · C Watson-Crick base pairs.
- The DNA double helix is held together mainly by- Hydrogen bonds

The secondary structure of DNA

Antiparallel strands

DNA Stabilization– Complementary Base Pairing

Robert Weaver, Molecular Biology, Copyright @ 1999. The McGraw-Hill Companies, Inc. All rights reserved.

Hydrogen bond

• Hydrogen bonds between bases hold the strands together: A and T, C and G

Ribbon model Partial

chemical structure

Computer model

Base Stacking The bases in DNA are planar and have a tendency to "stack". Major stacking forces: (1) hydrophobic interaction (2) Van der Waals forces

DNA Stabilization-Base Stacking

DNA Stabilization--H-bonding between DNA base pair stacks

The secondary structure of DNA is the double helix

The secondary structure of DNA is the double helix

Humo

A

HunnH

H

minor groove

А

major groove

-HO

Nama H-N

0 mm H-

A

G

А

D

H

С

minor groove

The secondary structure of DNA is the double helix

Normally hydrated DNA: B-form DNA Helical sense: right handed Base pairs: almost perpendicular to the **helix** axis; 3.4 Å apart One turn of the helix: **36** Å; ~10.4 base pairs Minor groove: 12 Å across Major groove: 22 Å across

Types of DNA

- 1- *B-form helix*:
- It is the most common form of DNA in cells.
- Right-handed helix
- Turn every 3.4 nm.
- Each turn contain 10 base pairs (the distance between each 2 successive bases is 0.34 nm)
- Contain 2 grooves;
- Major groove (wide): provide easy access to bases
- Minor groove (narrow): provide poor access.

- 1- *B-form helix*:
- The Major groove is rich in chemical information :
- The edges of each base pair are exposed in the major and minor grooves, creating a pattern of hydrogen bond donors and acceptors and of van der Waals surfaces that identifies the base pair.

- 2- A-form DNA:
- Less common form of DNA, more common in RNA
- Right handed helix
- Each turn contain 11 b.p/turn
- Contain 2 different grooves:
- Major groove: very deep and narrow
- Minor groove: very shallow and wide (binding site for RNA)

- 3- *Z*-form DNA:
- Radical change of B-form
- Left handed helix, very extended
- It is GC rich DNA regions.
- The sugar base backbone form Zig-Zag shape
- The B to Z transition of DNA molecule may play a role in gene regulation.

