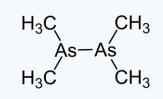
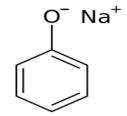
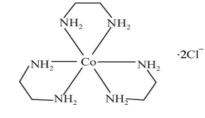

Organometallic Compounds

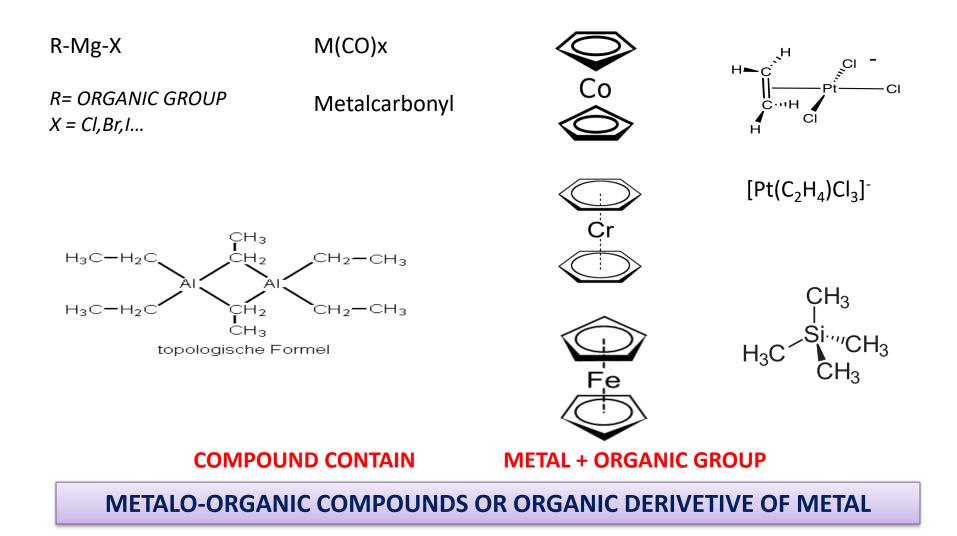
CC CHE 501 (Inorganic Chemistry) Unit : II (23 Marks)

Dr.N.I.Patel Chemistry Dept' Science College, Himatnagar




References.....


- 1. Organometallic compounds; Dr. Indrajeet Kumar; Pragati Prakashan
- 2. Organometallic and Bioinorganic Chemistry; 2nd Ed.; Ajai Kumar
- 3. Organometallic Chemistry; 1st Ed.; Gurudeep Chatwal; Himalaya Publishing house.
- 4. Organometallic Chemistry; 2nd Ed.; R.C.Mehrotra, A.Singh; New age International limited.
- 5. Inorganic Chemistry-II; 1st Ed.; S.Pimplapura and Rashmi Jain; Pragati Prakashan.
- 6. Inorganic Chemistry; James E. Huheey, Ekken A.Keuker, Richard L.keuker



METALO-ORGANIC COMPOUNDS OR ORGANIC DERIVETIVE OF METAL

COMPOUND CONTAIN

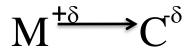
METAL + ORGANIC GROUP

ORGANOMETALLIC COMPOUNDS

One or More than one Carbone atom of Alkyl, aryl, Saturated, Unsaturated, Heterocyclic etc. organic compound are attached with metal.

2

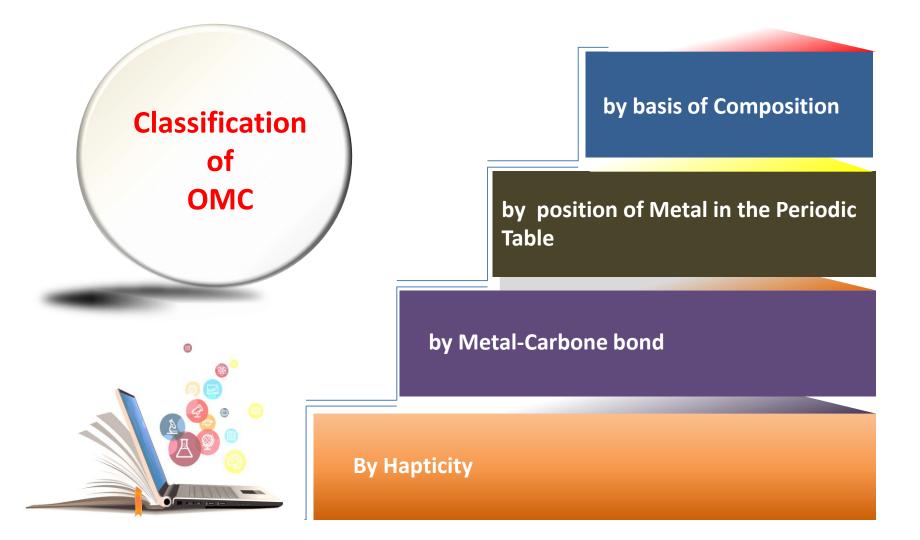
M-C bond are may be ionic, Covalent ($\sigma or \pi$) or *nC-ne* (non classified bond)



All metal formed OMC except Noble gases.

ORGANOMETALLIC COMPOUNDS

✓ Those metal having electro negativity less then C=2.55 are formed OMC with organic group.


EN of Metals less then 2.55

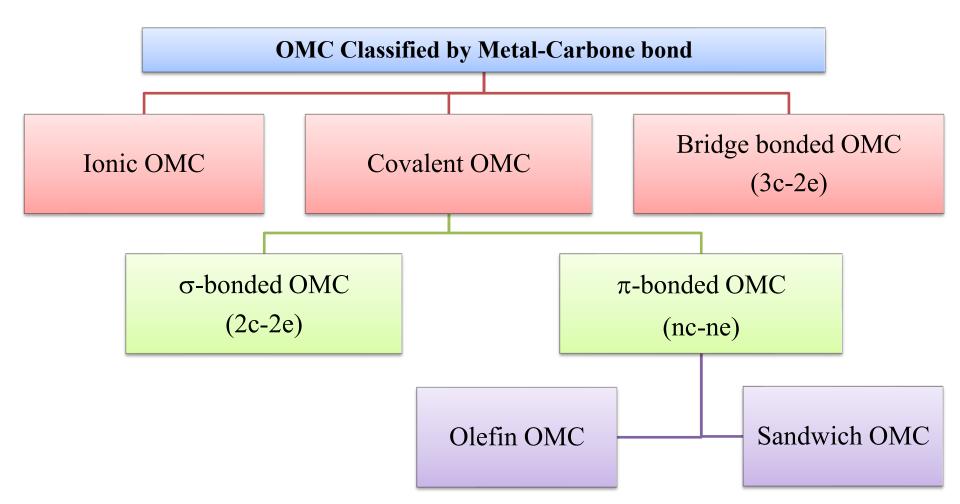
EN of Metals greeter than 2.55

H																
2.1																
<u>Li</u>	<u>Be</u>											B	<u>C</u>	<u>N</u>	<u> </u>	E
1.0	1.5											2.0	2.5	3.0	3.5	4.0
Na	Mg											A	<u>Si</u>	P	<u>s</u>	<u>CI</u>
0.9	1.2											1.5	1.8	2.1	2.5	3.0
K	<u>Ca</u>	<u>Sc</u>	Ti	<u>v</u>	<u>Cr</u>	Mn	<u>Fe</u>	<u>Co</u>	Ni	<u>Cu</u>	<u>Zn</u>	<u>Ga</u>	<u>Ge</u>	As	<u>Se</u>	Br
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.9	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8
<u>Rb</u>	Sr	Y	Zr	Nb	Mo	Tc	Ru	<u>Rh</u>	Pd	Ag	<u>Cd</u>	In	<u>Sn</u>	<u>Sb</u>	Te	1
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5
Cs	Ba		Hf	<u>Ta</u>	\underline{W}	Re	<u>Os</u>	<u>lr</u>	Pt	Au	Hg	Ш	Pb	Bi	Po	At
0.7	0.9	Lu	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.9	1.9	2.0	2.2

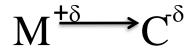
Classification (Type-1) of Organometallic compounds

1. Simple OMC Only Hydrocarbon organic group AI(CH3)3; B(CH3)3; Si(CH₃)₂(C₂H₄)₂ 2. Mixed OMC Hydrocarbon and Inorganic group R-Mg-X, (CH3)₂Sn Cl₂; Zeise's solt

Symmetrical OMC Only one type organic group AI(CH3)3; B(CH3)3; Ferrocine Unsymmetrical OMC More than one type of organic group Si(CH₃)₂(C₂H₄)₂ ; CH₃ Zn C₂H₅


Classification (Type-2) of Organometallic compounds

OMC are Classified by position of Metal in the Periodic Table. **Transition metal Main group OMC** 6 group OMC s-block & d & f –block p-block ele. ele. lonic π -bond and (N.C.Bond) σ -covalent nC-ne bond


PERIODIC TABLE OF THE ELEMENTS

1 H 1.008 Hydrogen 3 Li 6.94 9.0121831 11 Beryllium 12 98976928 Sodium 24.305		Atomic Nu Sy	ymbol ————————————————————————————————————	H 1.008 ← drogen ←	(1.5.) (1.5.) (1.5.)	nic Mass ie			5 B 10.81 Boron 13 AL 26.9815385 Aluminium	6 12.011 Carbon 14 Sil Silicon	7 Nitrogen 15 P B 20.973761998 Phosphorus	8 0 0xygen 16 S 32.06 Sulfur	9 F 18-99403163 Fluorine 17 Cl 35.45 Chlorine	2 Helium 10 Neon 18 Argon
19 20 39.0983	21 Sc 44.955908 Scandium 39 Y 40 Zr	50.9415 51 Vanadium Chr	Сг 1.9961 romlum Ло	26 Fe 55.845 Iron	27 Co 58.933194 Cobalt 45 Rh	28 Ni ^{58,6934} Nickel 46 Pd	29 Cu 63.546 Copper	30 Zn ^{65.38} Zinc 48 Cd	31 Ga 69.723 Gallium	32 Ge 72.630 Germanium	33 As 74.921595 Arsenic 51 Sb	³⁴ Se ^{78.971} Selenium	35 Br 79.904 Bromine	³⁶ Kr ^{83.798} Krypton
KDSI85.467887.62RubidiumStrontium55CsBa	88.90584 91.224 Yttrium Zirconium	92.90637 Niobium Moly	vbdenum 75 Re	Tu 101.07 Ruthenium	102.90550 Rhodium 77 Ir	Pa 106.42 Patladium	Ag 107.8682 Silver 79 Au	LCA 112.414 Cadmium 80 Hg	In 114.818 Indium	5П 118.710 Тіп 82 РЬ	SD 121.760 Antimony 83 Bi	127.60 Tellurium 84 PO	126.90447 Iodine	ке 131.293 Хепоп 86 Rn
132.00545196 Caesium Baruz Barum BT Fr 223 Francium 226 Radium	71 178.49 Hafnium 89 103 Rf 267 Rutherfordium	Tantalum Tur 105 Db 268	183.84 Ingsten 186.207 Rhenium 107 Bh 269 269 269 269 270 Bohrium	190.23 Osmium 108 HS 269 Hassium	192.217 Iridium 109 Mt 278 Meitnerium	195.084 Platinum 110 DS 281 Darmstadtium	196.966569 Gold	200.592 Mercury 112 Cn 285 Copernicium	204.38 Thallium 113 Uut 286 Ununtrium	207.2 Lead	208.98040 Bismuth 115 Uup 289 Ununpentium	209 Polonium 116 LV 293 Livermorium	210 Astatine	222 Radon 118 UUUO 294 Ununoctium
Lanthanide Series	57 La 138.90547 Lanthanum Lanthanum	140.90766 14	Nd H41.242 bymium	62 Sm 150.36 Samarium	63 Eu 151.964 Europium	64 Gd 157.25 Gadolinium	65 Tb 158.92535 Terbium	66 Dy 162.500 Dysprosium	67 Ho 164.93033 Holmium	68 Er 167.259 Erblum	69 Tm 168.93422 Thulium	70 Yb 173.054 Ytterbium	71 Lu 174.9668 Lutetium	
Actinide Series	89 Ac 227 Actinium BO Th 232.0377 Thorium	91 Pa 231.03588 238	U 8.02891 ranium	94 Pu 244 Plutonium	95 Am 243 Americium	96 Cm 247 Curium	97 Bk 247 Berkelium	98 Cf 251 Californium	99 Es 252 Einsteinium	100 Fm 257 Fermium	101 Md 258 Mendelevium	102 No 259 Nobelium	103 Lr ²⁶⁶ Lawrencium	

Classification (Type-3) of Organometallic compounds

- ► M-C Bond is Ionic bond. (2C-2e bond)
- ➢Highly electropositive Metals such as Alkali (I-group), Alkaline earth (II-group) and lanthanide and actinide metal.
- Carbone of Organic Compounds is Negative charged (Carbanion ion)
- Example: CH_3K , C_2H_5 Na, $Ca(C_2H_5)_{2,}$

 $C_{10}H_8Na$ (Sodium Naphthalemide) C_6H_6Na .

[2] Covalent OMC :

≻M-C Bond is covalent σ OR π bond.

➢Bond may be localized or delocalized between one or more Carbone of organic group.

Sub divided into following types.

(2A) σ-Bonded OMC

(2B) π-Bonded OMC

(2A) σ-Bonded OMC

M-C Bond is covalent bond. (2C-2e)

Bond may be localized Metal and one Carbone of organic group.This OMC are formed by p-Block element

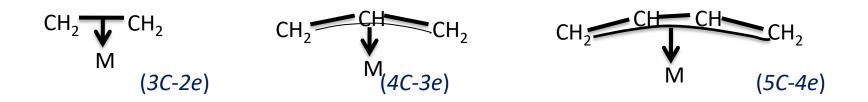
(Electronegative charge is 1 to 2.5).

- Some d-block element are also form this type of OMC (W, Mn..)
- $\succ \text{Examples: } B(CH_3)_3 ; Al(CH_3)_3 ; Si(CH_3)_4 ; Pb(CH_3)_4$

(2B) π-Bonded OMC

M-C Bond is π -bond. (*nC-ne*)

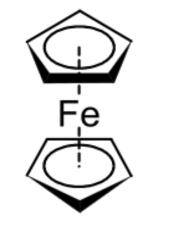
➢Bond may be delocalized between Metal and more than two Carbone of organic group.

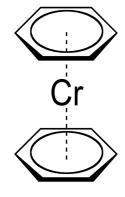

This OMC are formed by d-Block element.

> Divided into two part by types of organic group.

[2B(i)]Ollifinic π -Bonded OMC[2B(ii)]Sandwich π -Bonded OMC

[2B(i)] Ollifinic π -Bonded OMC


Aliphatic Organic group containing delocalized π - electron formed this type of OMC. [Containing C=C anc $\mathbf{R} - \mathbf{C} \equiv \mathbf{C} - \mathbf{R}$]


Zeise's solt K[Pt(C₂H₄)Cl₃]⁻

[2B(ii)] Sandwich π -Bonded OMC

Aromatic Organic group containing delocalized π - electron formed this type of OMC. Two Aromatic ring attached with one metal to giving delocalized π - electron to the Metal.

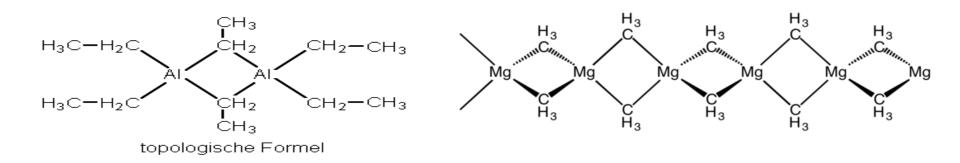
(7C-6e)

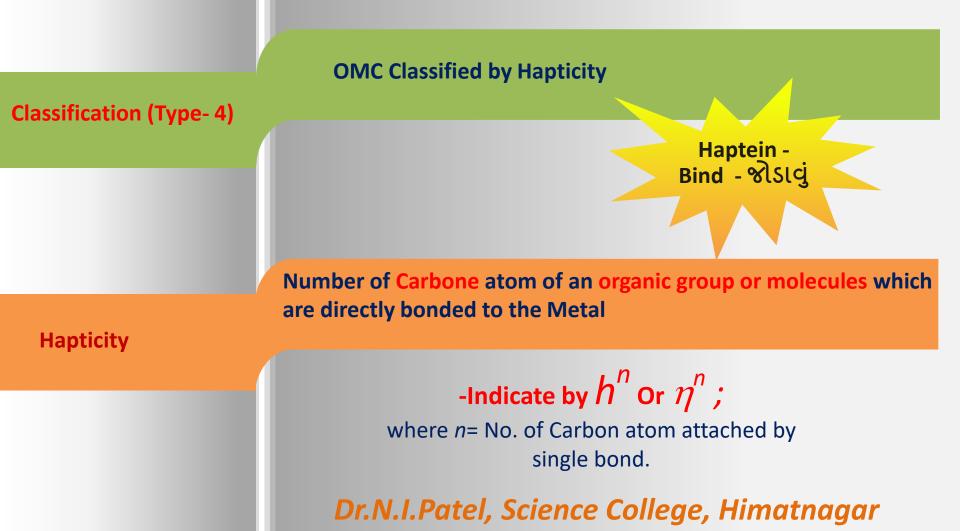
(6C-5e)Fe(C₅H₅)₂.

 $Cr(C_6H_5)_2$

[3] Bridge bonded OMC :

▶ 3C-2e bond.


≻Alkali or Arial group act as bridging legend.


Electron deficient OMC.

Al₂(C₂H₅)₆ OR Al₂(C₂H₅)₄(μ-C₂H₅)₂

$AI_{2}(C_{6}H_{5})_{6}$ OR $AI_{2}(C_{6}H_{5})_{4}(\mu-C_{6}H_{5})_{2}$

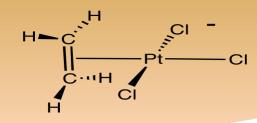
[Mg(CH₃)₂]_n Polymeric dimethylmegnesium

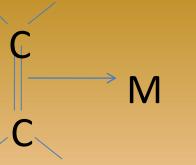
• Only one Carbone atom of organic compound is directly bonded with metal is called.....

Alkanes, alkenes, alkynes, aryls ect. Almost all organic compounds
Bond of metal- Carbone are Ionic, Covalent, Coordination,
Type of Metal-Carbone bond is *2C-2e*

•Example:

•Li-CH₃; Na-C₆H₅; Mg-CH=CH₂; •Metal carbonyl Ni(CO)₄;Fe(CO)₅


2. Di-hapto OMC (h^2 Or η^2 –OMC)


• Only two Carbone atom of organic compound is attached through only bond with metal is called.....

Unsaturated organic compounds contain π-electron (alkenes, alkynes, aryls) ect.
Bond of metal- Carbone are Non classified π- bond,
Type of Metal-Carbone bond is 3C-2e

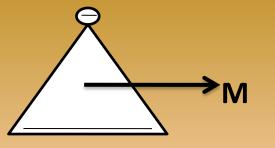
•Example:

 $K[PtCl_3(C_2H_4)]$

^

3. Tri-hapto OMC (h^3 Or η^3 –OMC)

• Only three Carbone atom of organic compound is attached through only bond with metal is called.....

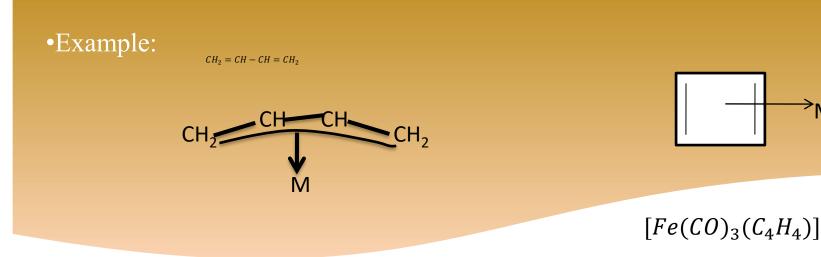

Unsaturated organic comp. contain delocalized π-electron
Bond of metal- Carbone are Non classified π- bond
Type of Metal-Carbone bond is 4C-3e

•Example:

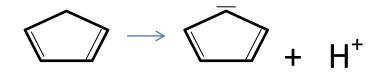
Mn(1

$$CH_2 = CH - CH_2^-$$

$$\eta^3 - C_3H_5)(CO)_4]$$
M


• Only four Carbone atom of organic compound is attached through only bond with metal is called.....

⁷M


• unsaturated organic comp. contain delocalized π -electron

•Bond of metal- Carbone are Non classified π - bond

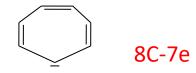
•Type of Metal-Carbone bond is 5C-4e

5. Penta hapto OMC (h^5 Or η^5 –OMC)

 $Fe(C_5H_5)_2$; ferrocene

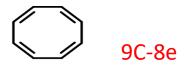
6. Hexa hapto OMC (h^6 Or η^6 –OMC)

 $Cr(C_6H_6)_2$; dibenzenecromium



7C-6e

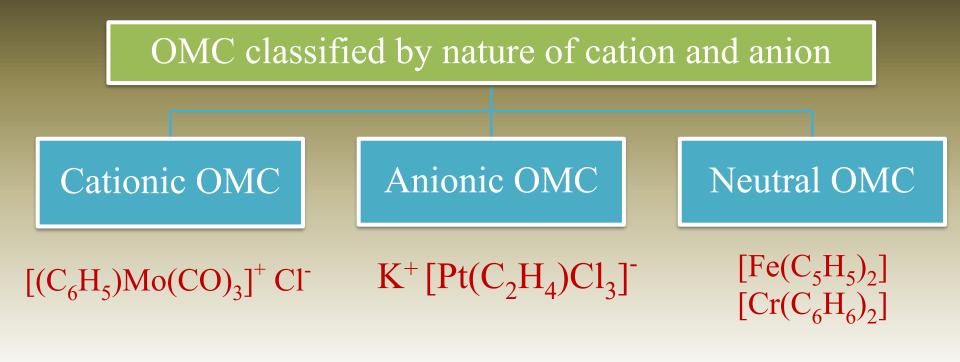
6C-5e


7. Hepta hapto OMC (h^7 Or η^7 –OMC)

$$[Mo(CO)_3(C_7H_7)]BF_4^-$$

8. Octa hapto OMC (h^8 Or η^8 –OMC)

 $[U(\eta^8 - C_8 H_8)_2]; uranocine$



Nomenclature

of Organometallic Compound by IUPAC International Union of Pure and Applied Chemistry

Similar to Coordination compound

Dr.N.I.Patel, Science College, Himatnagar

(1) The cation name first and then the anionic part's name

•Name of simple Cation or Anion (out side of Coordination sphere) is simple as

ion	name	ion	name
K ⁺¹	Potassium	Cl ⁻¹	Chloride
Na ⁺¹	sodium	SO_4^{-2}	Sulphate
NH_4^{+1}	ammonium	SO_{3}^{-2}	Sulphaite
Li ⁺¹	lithium	NO3 ⁻¹	Nitrate
Ca ⁺²	Calcium	NO_2^{-1}	Nitrite
Mg ⁺²	Magnesium	CO ₃ ⁻²	Carbonate
Be ⁺²	Berelium	S ⁻²	Sulphide

(2) Name of OMC (Coordination sphere)

First Name of legend with number and then Metal atom.

(a) How to Name of Legend ?

First write number of legend and then name of legend

1. Name of Anionic legends: -ide,(આઈડ)-ite, (આઈટ)-ate (એટ) suffix Replaced by –'o'. (ઓ)

Example:

 Cl^- ,Chloride, -Chloro; NO_3^- ,Nitrite, -Nitro; NO_2^- Nitriate,-Nitrieto

 SO_3^{-2} Sulphite -sulphito SO_4^{-2} Sulphate - sulpheto

2. Name of Neutral legends :	Special Name
Example:	H ₂ O, Aquo;
	NH ₃ , Ammine;
	CO, Carbonyl;
	NO, Nitrosyl
	OH, Hydroxyl

3. Name of Organic legends -ane (એન) Or –e (એ) suffix replaced by '–yl' (ਘાઈલ) Example:

CH ₄ -	Methane,	Methyl,
C ₄ H ₉ ,	Butane,	Butyl,
$CH_2 = CH_2$,	Ethene,	Ethenyl ,
CH ₂ =CH-CH ₃	Propyne,	Propynyl
C_6H_5	Benzene,	Phenyl

Indication of Number of Legends

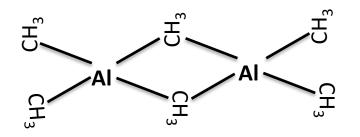
For simple legends-

-di, tri, tetra, penta, hexa, hepta, octa....

For Complex legend,

(aromatic organic group, bridge bonding group) - bis, tris, tetrais, pentais, hexais.....

Indication of Hapticity:


 $K[PtCl_3(C_2H_4)]$

The hapticity of and organic ligand is denoted by the symbol ' η ' 'eta' with appropriate numerical superscript to No. of 'C' attached with Metal. $\eta^2 \eta^3 \eta^4$

Potassium trichloro(η^2 -ethenyl)platinate(II)

•If there is bridge ligand prefix ' μ ' before name of ligand.

$$Al \cdot \mu - (CH_3)_2 (CH_3)_4$$

Bis -µ-methyl teramethyl alluminium

•If there are two or more different kind of legends, they are written in the **alphabetical order** irrespective of the number of legends.

 $[PtBrCl.NH_3(\eta^2 - C_2H_4)]$

TriAmminebromochloro (η^2 -ethenyl)platinum

 $[PtBr_2Cl.(\eta^2 - C_2H_4)]$

Dibromochloro (η^2 -ethenyl)platinum

(b) Name Of Metal ion:

Anionic OMC:

Ligands are name first and then the metal ion.

To name the metal ion, the suffix $-ate(\Im2)$ is added to its name and to indicatethe oxidation state in Roman Number in bracket of the metal ion.Example:Ni⁺²: Nickelate(II)Fe⁺²: Ferrate(II);Ni⁺²: Nickelate(II)Co⁺³; Cobaltate(III);Pt⁺⁴ :Platinate(IV)

Cationic OMC:

To simple name of metal ion with indication oxidation state in Roman Number in bracket.

Special Name Of Metal:

The name of Neutral OMC contained p-block element may be named as following....

Symbol	Name	OMC Name
Pb	Plumbs	Plumbane
В	Boron	Borane
Sb	Antimony	Stibine
Si	Silicone	Silane
Ge	Germanium	Germane
As	Arsenate	Arsine
PH ₃	Phosphate	Phosphaine
Sn	Tin	Stannane

Name Of Metal In Neutral & Mixed OMC:

Ligands are name first in Alphabetical order then the metal ion. OR First name of Organic ligand and then metal and last inorganic ligand(simple name).

 $(CH_3)_2SnBr_2$

 $(C_2H_5)Pb(CH_3)_3(CO)_2$

 $(C_6H_5)Ge(C_6H_5)$

 $(CH_3)As(C_2H_5)$

1.Dibromo dimethyl stannane 2.Dimethyl tin dibromide

Dicarbonyl ethyal trimethyl plumbane

Diphynyl germane.

Ethyl methyl arsine.

[$Fe(\eta^4 - C_4H_4)_2(CO)_2$] Dicarbonylbis(η^4 -cyclobutadienyl)iron

 $[Mn(\eta^5 - C_5H_5)_2(CO)_3]$

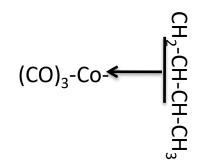
Tricarbonyl bis(η^5 -cyclopentadinyl)manganese

$$Cr(C_{6}H_{6})_{2} \qquad Bis(\eta^{6} - phenyl)chromium$$

$$Fe(C_{5}H_{5})_{2} \qquad Bis(\eta^{5} - cyclopentadienyl)iron(0)$$

$$[Ni(\eta^{3} - C_{3}H_{5})_{2}] \qquad Bis(\eta^{3} - allyl(propynyl))nickel$$

[*PtBrCl*. *NH*₃($\eta^2 - C_2H_4$)] **Amminebromochloro** (η^2 -ethenyl)platinum


 $(CO)_{3}Fe(\mu - CH_{3})_{3}Fe(CO)_{3}$ Di(Tris(μ -methyl) tricarbonyl iron)

 $Al_2(CH_3)_4(\mu$ - $CH_3)_2$. trimethylaluminium,

Bis -µ-methyl teramethyl alluminium

 $K[Sb(C_6H_6)(Cl)_5]$

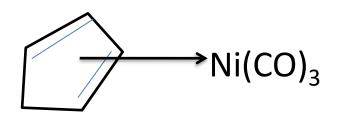
Potassiumpentachlorophenylantimonate(IV)

Tricarbonyl(1-3 η³-butenenyl) cobalt.

$K[B(C_6H_5)_4]$ Ptassium tetraphenyl borate(III)

$[B(CH_2-CH_3)_3]$ Triethyl borane

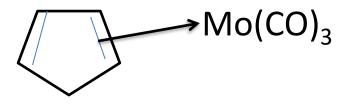
```
[Co(\pi - C_3 H_5)(CO)_3](\eta^3 - allyl) tricarbonyl cobalt.[Fe(C_4 H_6)(CO)_3](\eta^4 - but adinene) tricarbonyl iron.
```

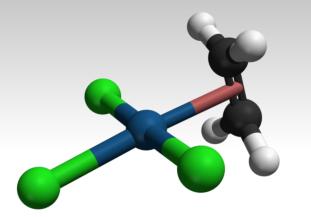

n-butyl lithium.

 $K[Sb(C_6H_5)(CI)_5]$

 $Li(n-C_4H_9)$

Potassium pentachloro(phenyl)atimonate.


 $[Ni(\eta^4 - C_5 H_5)(CO)_3]$

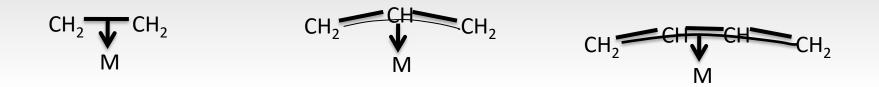

Tricarbonyl(1-4 η^4 -cyclopentadinyl) nickel.

$[Mo(\eta^2 - C_5H_5)(CO)_3]$

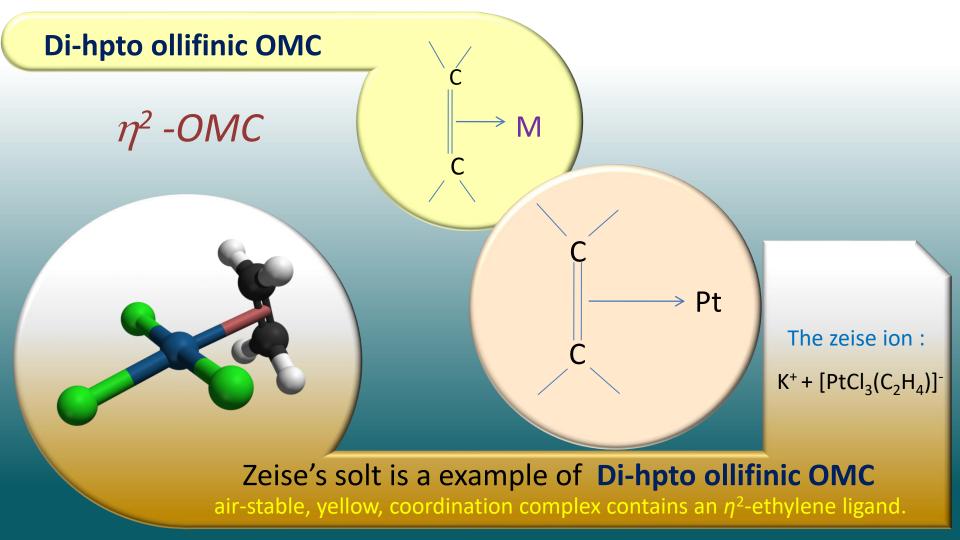
Tricarbonyl(η^2 -cyclopentadinyl) mollybledum.

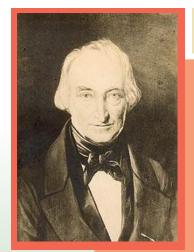
Di-hpto OMC or Ollifinic OMC

- ડાઈ-હેપ્ટો કાર્બધત્વિક સયોજનો સમજાવો
- ઓલિફીનીક કાર્બધત્વિક સયોજનો નોધ લખો
- Zeise's સોલ્ટ ની બનાવટ, ગુણધર્મો અને બંધારણ-બંધન સમજાવો.
- "Zeise's સોલ્ટ" નોધ લખો



Potassium trichloro(η^2 -ethenyl)platinate(II)


Ollifinic OMC


Aliphatic, Unsaturated hydrocarbon organic group like Alkain, alkaline etc.. containing delocalized π - electron are attached with metal (σ and π bond) and Gives Ollifinic OMC.

More than two "c' atom bonding with metal and gives *di*, *tri*, *tera*...*hapto* OMC

Metals are Pt(II); Ag(I); Pd(II); Hg(II); Cu(I)

History

Zeise's salt was one of the first Organometallic compounds to be reported.

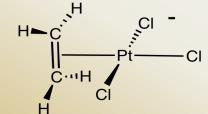
It was discovered by William Christopher Zeise, who prepared this compound in 1830 while investigating the reaction of $K_2[PtCl_4]$ with boiling ethanol.

$K_2[PtCl_4] + C_2H_4OH \longrightarrow K[Pt(C_2H_4)Cl_3].H_2O + KCl$

Preparation

This compound is commercially available as a mono hydrate. $K[Pt(C_2H_4)Cl_3] \cdot H_2O$

The hydrate is commonly prepared from $K_2[PtCl_4]$ and ethylene in the presence of a catalytic amount of $SnCl_2$. And than extraction with ether.

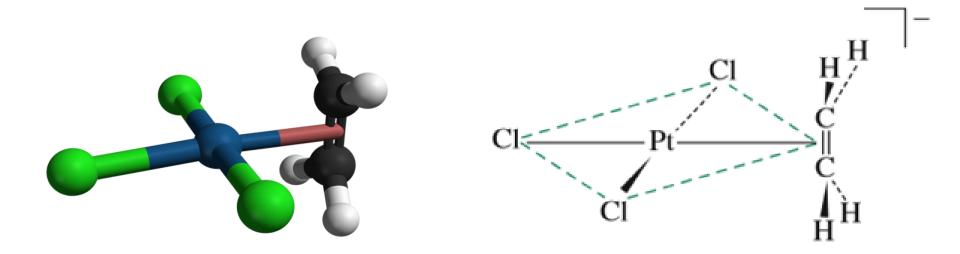

 $K_2[PtCl_4] + C_2H_4 \xrightarrow{SnCl_2} K[Pt(C_2H_4)Cl_3] + KCl$

Properties

Yellow color, solid substance
Soluble in Benzene and Chloroform.
Decomposed at 125[°]C to 130[°]C.
Reaction with Pyridine , 3Cl are substituted.

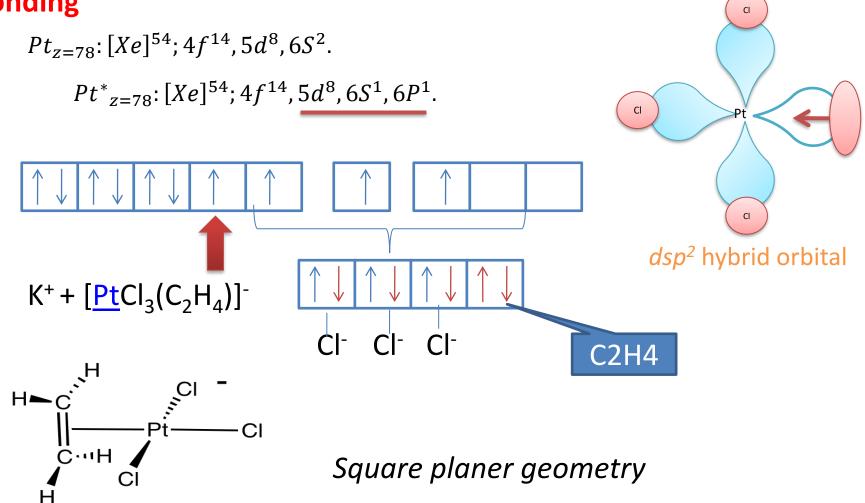
$K[Pt(C_2H_4)Cl_3] + Py \longrightarrow [Pt(C_2H_4)Py_3]$

Properties

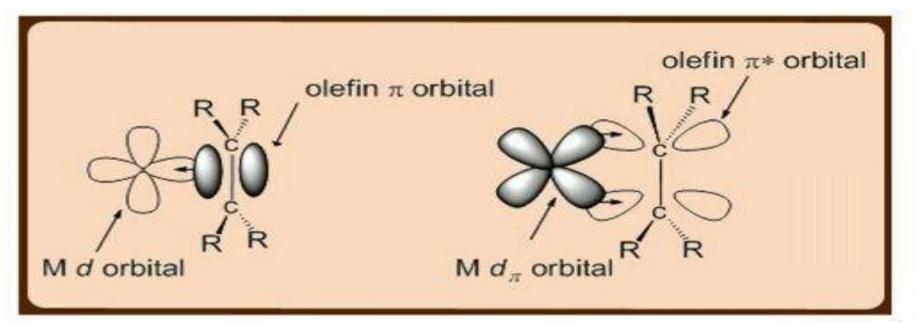

•Reaction with Ethonolic solution of Zeise's solt with con.HCl gives dimmer form of salt . (orange colour salt)

 $2K[Pt(C_2H_4)Cl_3] + Con.HCl \xrightarrow{C_2H_4OH} [Pt_2(C_2H_4)_2Cl_4] + 2KCl$

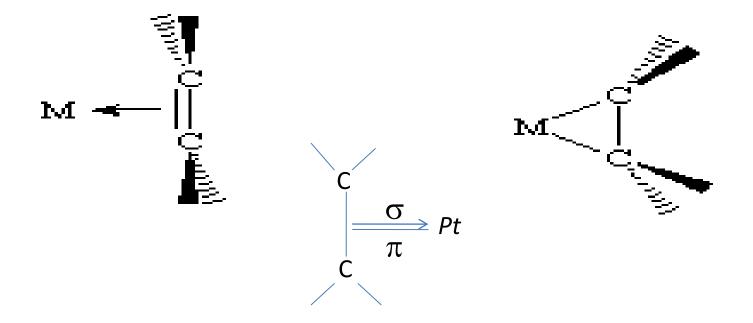
Structure


The zeise ion structure is square planar geometry.

The alkene C=C bond is approximately perpendicular to the PtCl₃ plane.

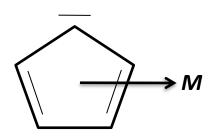

X-Rays. Bond Length C=C is 1.40 A to 1.47 A

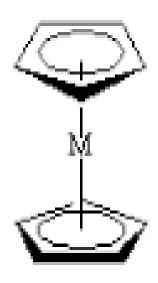
Bonding


X-Rays. Bond Length C=C is 1.40 A to 1.47 A why?

In common organic compounds Bond length of –C-C- is 1.54 A, And –C=C- is 1.34 A

Back bonding -Back donation- $d\pi$ -p π bonding

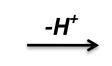

X-Rays. Bond Length C=C is 1.40 A to 1.47 A why?



Bond Type OR nature : $d\pi - p\pi$ Bond order : Pt ----- C_2H_4

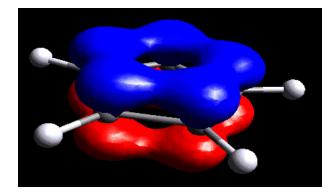
Metalocene, Ferrocene, $\eta^{5-}OMC$, Sandwich bonded OMC

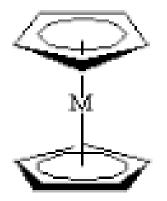
મેટલોસીન સયોજનો ઉપર નોધ લખો.
 ફેરોસીન ની બનાવટ, ગુણધર્મ અને બંધારણ સમજાવો.
 ફેરોસીન ઉપર નોધ લખો



Metallocene

✓ Cyclopentadine ion having 5π delocalized electron.




Cyclopentadien 4π localized electron

 $\frac{\text{Cyclopentadien ion}}{5\pi \text{ delocalized electron}}$

✓ CP attached with Metal to 6C-5e bond. ✓ CP is η^5 legend make η^5OMC η^5 (pentahapto) sandwich structure.

Metallocene consisting of two cyclopentadienyl rings bound on opposite sides of a central <u>metal</u> atom and give sandwich structure.

M= Mg, Ti, V, Cr, Mn, Fe, Co, Ni

 η^5 (pentahapto) sandwich structure.

M= Mg, Ti, V, Cr, Mn, Fe, Co, Ni

Nickelocene

Magnocene

Manganocene

[Discover in 1951] [Important example of Metallocene]

Formula $Fe(C_5H_5)_2$.

 $bis(\eta^5$ -cyclopentadienyl)iron(0)

dicyclopentadienyl iron

Synthesis

[1] Synthesis of ferrocene using the <u>Grignard reagent</u> cyclopentadienyl magnesium bromide, add <u>Iron(III) chloride</u> is then suspended in anhydrous <u>diethyl ether</u>.

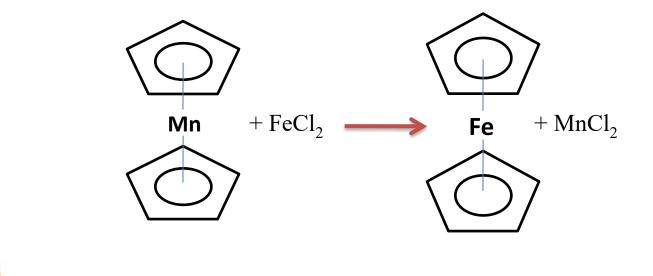
 $6 \text{ C}_5\text{H}_5\text{MgBr} + 2 \text{ FeCl}_3 \rightarrow 2 \text{ Fe}(\text{C}_5\text{H}_5)_2 + 6 \text{ MgBrCl} + 2 (\underline{\text{C}_5\text{H}_5})_2$

[2] The direct reaction of <u>gas-phase cyclopentadiene</u> with metallic iron at 300 °C or with <u>iron pentacarbonyl</u>

 $Fe_{(s)} + 2 C_5H_6(g) \rightarrow Fe(C_5H_5)_2 + H_2(g)$

 $Fe(CO)_5 + 2 C_5H_6(g) \rightarrow Fe(C_5H_5)_2 + 5 CO(g) + H_2(g)$

[3] **Trans metalation;** Using commercially available <u>sodium cyclopentadienide</u> react with ferrous chloride:


$$2 \operatorname{NaC}_{5}H_{5} + \operatorname{FeCl}_{2} \rightarrow \operatorname{Fe}(C_{5}H_{5})_{2} + 2 \operatorname{NaCl}$$
Na
$$\swarrow$$

[4] Some <u>amine</u> bases can be used for the preparation of ferrocene.

 $2 \operatorname{C}_{5}\operatorname{H}_{6} + 2 \operatorname{(CH_{3}CH_{2})_{2}NH} + \operatorname{FeCl}_{2} \rightarrow \operatorname{Fe}(\operatorname{C}_{5}\operatorname{H}_{5})_{2} + 2 \operatorname{(CH_{3}CH_{2})_{2}NH_{2}Cl}$

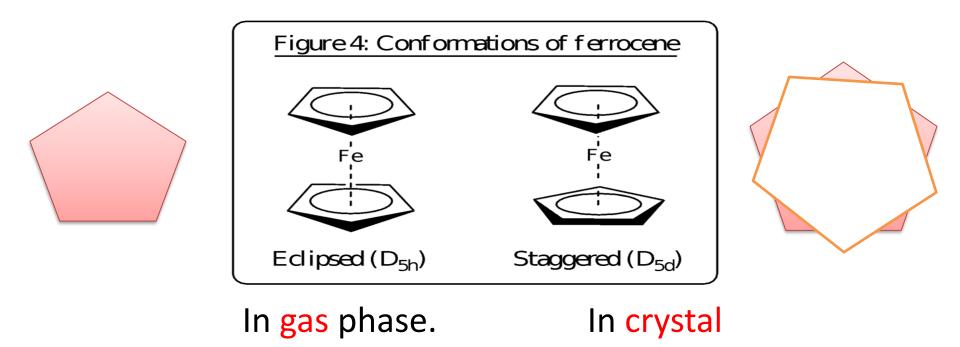
[5] Direct transmetalation can also be used to prepare ferrocene from other metallocenes, such as manganocene:

 $\operatorname{FeCl}_2 + \operatorname{Mn}(\operatorname{C}_5\operatorname{H}_5)_2 \rightarrow \operatorname{MnCl}_2 + \operatorname{Fe}(\operatorname{C}_5\operatorname{H}_5)_2$

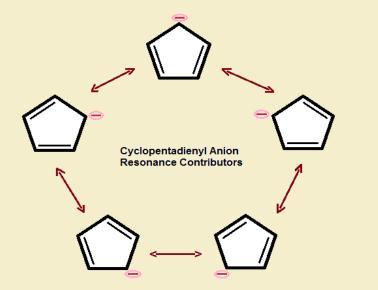
Properties:

- •Crystals of ferrocene yellowish-orange colour.
- Camphor like order

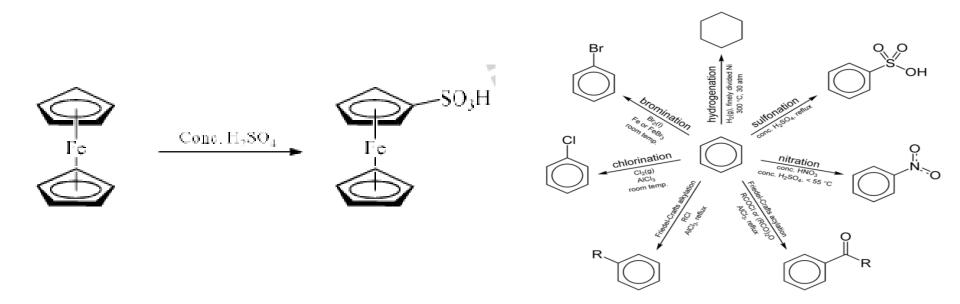
- •Ferrocine is soluble in normal organic solvents, such as benzene, but is insoluble in water.
- •Crystals of ferrocene after purification by vacuum sublimation


- •Ferrocene is an <u>air</u>-stable solid
- •It is stable to temperatures as high as 400 °C.
- •Diamagnetic (no unpaired ele.; $\mu = 0$)

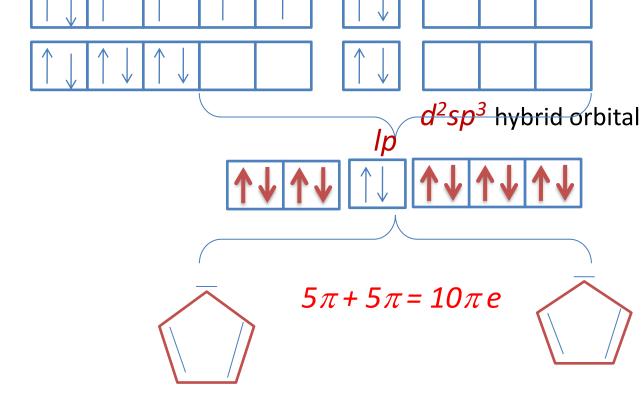
Between value of 1.33 to 1.54 A

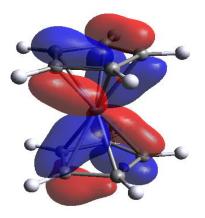

Structure

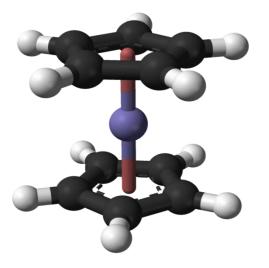
According to <u>X-ray crystallography</u>


- : The bond distances C-C are 1.39 Å In CP rings, Fe–C is 2.04 Å.
- : η^5 (pentahapto) sandwich structure.
- : The CP rings being in a staggered and eclipsed conformation,

Each cyclopentadienyl (CP) ring is then allocated a single negative charge, bringing the number of delocalized 5π -electrons and thus making them <u>aromatic</u>.




In ferrocene C-C bond length is 1.39 A Between value of 1.33 to 1.54 A Ferrocene is aromatic in nature, so it gives reaction like benzene. Sulphonation, alkailation, halogination, nitration..ect....



Bonding in Ferrocene

 $Fe_{z=26}$: $[Ar]^{18}$; $3d^6$, $4S^2$, $4P^0$.

 $Fe_{z=26}$: $[Ar]^{18}$; $3d^6$, $4S^2$, $4P^0$.

EAN rules EAN= T.Fe's ele.+ accepted ele. = 26 + 2(5)= 36 (Kr)

 $18^{th} electron rules,$ EAN= Fe's velence ele.+ accepted ele. = 08 + 2(5) = 18 ele.(Ar)

Conclusion: Ferrocene is stable compound

Organolithium compounds contain Carbon – lithium bonds.

પ્રશ્ન: ૧, કાર્બલીથીયમ સંયોજનો ઉપર નોધ લખો. પ્રશ્ન: ૨, કાર્બલીથીયમ સંયોજનોની બનાવટ, ગુણધર્મો, ઉપયોગ સમજાવો. પ્રશ્ન: ૩, આલ્કાઈલલીથીયમ સંયોજનોની સંરચના સમજાવો.

Dr.Naresh I.Patel Chemistry Dept. Science College, Himatnagar

Li- is first alkaline metal (Li:z=3; <u>1S²;2S¹</u>), *Electron deficient atom*,

Lithium alkyl [*R-Li*] *is important Organolithium compounds* Wher, R=CH₃, ; C₂H₅.

Importance:

It is found that in comparison with <u>Grignard reagents</u>, organolithium reagents can often perform the same reactions with <u>increased rates and</u>

higher yields, such as in the case of **metalation**.

$$M-B + R-H \longrightarrow M-R + B-H$$

C2H5Na+C6H6 = C6H5Na+C2H6

Preparation [1] Reaction with lithium metal

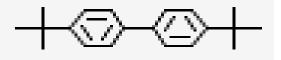
Reduction of alkyl or aryl halide with metallic lithium can afford simple alkyl and aryl organolithium reagents.

Laboratory Preparation

$$2Li_{(s)} + R - X \xrightarrow{ether} R - Li + LiX$$

$$2Li_{(s)} + Ar - X \xrightarrow{ether} Ar - Li + LiX$$

X = Cl, Br, I


Industrial preparation

Organolithium compound is achieved by treating <u>the alkyl chloride with</u> <u>metal lithium</u> containing 0.5-2% sodium. The sodium <u>increases the rate</u> and Product.

$$2Li_{(s)} + C_4H_9Cl \xrightarrow{Na_{(s)} + Ether} Li - C_4H_9 + LiX + E$$

The conversion is highly <u>exothermic</u>.

Sometimes, lithium metal in the form of fine powders are used in the reaction with certain catalysts such as <u>naphthalene</u> or 4,4'-di-t-butyl biphenyl (DTBB).

Preparation [2] Metalation (*lithium hydrogen exchange*).

This is the most common method for preparing **alkynyllithium**, because the terminal hydrogen bound to the **sp** carbon is very acidic and easily **deprotonated**. In **Acetylene** compounds 'H' atom is **Acidic nature**. The relative acidity of hydrogen atoms define the position of lithium.

$$C_6H_5Li + C_6H_5 - C \equiv C^-H^+ \longrightarrow C_6H_6 + C_6H_5 - C \equiv C^-Li^+$$

2-phynyl ethyane (acetylene)

Preparation [3] Lithium halogen exchange

✓ tert-butyllithium or *n*-butyllithium are the most commonly used reagents for generating new organolithium species through lithium halogen exchange.

✓ Lithium-halogen exchange is mostly used to convert *R-X* or *Ar-X* (X = Br, *I*) with sp^2 carbons to the corresponding organolithium compounds.

✓ The reaction is extremely fast, and often proceed at -60 to -120 °C.
 ✓ Crystal Phenyllithium is prepared by this method.

$$C_4H_9Li + C_6H_5I \rightarrow C_4H_9I + C_6H_5Li_{(s)}$$

Preparation [4] Transmetalation

This method can be used for preparing vinyllithium. Vinyllithium is prepared by Metal exchange in *Phenyllithium and tetra vinyltin*.

$$4C_6H_5Li + (CH_2 = CH_2)_4Sn \xrightarrow{Diethylether} (C_6H_5)_4Sn + 4(CH_2 = CH_2)Li$$
soluble

Phenyltin is less soluble then vinyllithium so it is easily separate from mixture.

$$(C_6H_5)_2Hg + 3Li_{(s)} \xrightarrow{Murcuration+ether} 2(C_6H_5)Li + Li - Hg_{Alloy}$$

Preparation [5] Addition reaction

1,2 tetra phenyl ethene

Tetra phenyl ethanyl dilithium

Properties:

> Organolithium compounds are *highly reactive* species and require *specialized handling techniques*.

 \succ Reactions are conducted using <u>air free techniques</u>.

> They are often *corrosive*, *flammable*, and sometimes *spontaneous ignition* when presence of *oxygen or moisture*.

- > Organolithium reagents are stored below 10° C.
- > Organolithium reagents react with ethers, which are often used as solvents.
- > Organolithium compounds are highly *volatile*.
- Sublimation in vacuum.
- > *Decomposed* at normal room Temperature.

$$CH_3 \cdot CH_2 \cdot Li \xrightarrow{Air \cdot \Delta} Li - H + CH_2 = CH_2$$

•Li-CH₃ is Most stable Organolithium compound.

 ✓ It is Collourless, Crystal solid compound.
 ✓ It is decomposed at 200 C.
 ✓ Soluble in Non-poler organic solvent. Benzene, Carbone tetrachloride.

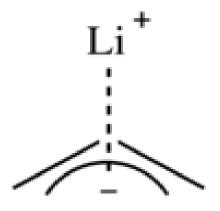
Structure and Bonding

•Organolithium structures have been elucidated by

NMR spectroscopy and X-ray diffraction analysis.

- •Alkyllithium R-Li species are often represented as monomer or polymers.
- •*Their structures depend on the nature of organic substituent,* <u>Solvent</u> *and the presence of other ligands.*

•*Methyl Lithium and Ethyl litihium are tetramer.* •[Li-CH₃]₄; [Li-C₂H₅]₄


Compound	Solvent	Structure
methyllithium	THF	tetramer
methyllithium	ether	tetramer
n-butyllithium	pentane	hexamer
n-butyllithium	ether	tetramer
n-butyllithium	THF	tetramer-dimer
sec-butyllithium	pentane	hexamer-tetramer
isopropyllithium	pentane	hexamer-tetramer
tert-butyllithium	pentane	tetramer
tert-butyllithium	THF	monomer
phenyllithium	ether	tetramer-dimer
phenyllithium	ether/HMPA	dimer

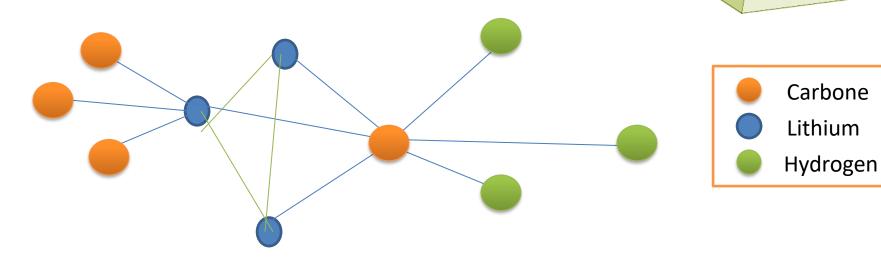
Bonding and Structure

Nature of carbon-lithium bond

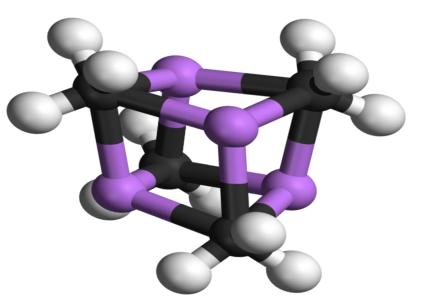
The relative <u>electro negativities</u> of carbon and lithium suggests that the C-Li bond will be highly polar. The C-Li bond to be essentially ionic, a small <u>covalent</u> character.

Electronegativity Carbone : 2.55 Lithium : 0.98

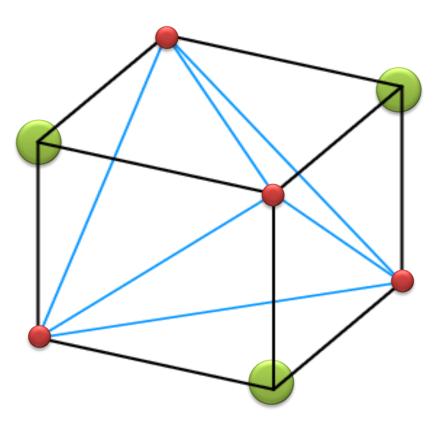
• In Alkyl lithium (R-Li),

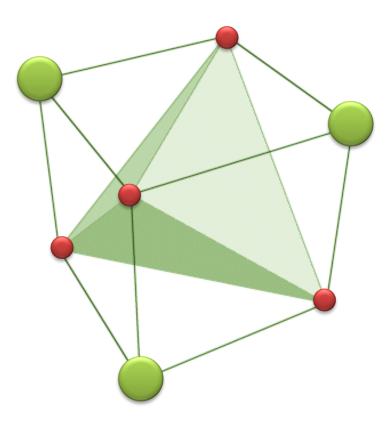

 $C_{Z=6}$: 1S²; 2S²; 2P²

 $Li_{Z=3}$: 1S²; 2S¹;


Geometry of Li and C atom is Tetrahedron.

Sp³ Hybridization of Li and C atom.


- One C attached to 3H and 3Li. Coordination No.of C=6
- One Li attached to 4 C, Coordination No.of Li=4


Structure of [Li -CH₃]₄

Li lies on the angle of tetrahedron CH_3 lies on the face of tetrahedron.

Li lies on the angle of tetrahedron CH_3 lies on the face of tetrahedron.

Uses of Organolithium Compounds

Highly reactable so limited used of Organolithium compounds.

•They are important reagents in <u>organic synthesis</u>, and are frequently used in *nucleophilic addition, simple deprotonation and metalation.*

- •Used in **Polymerization** as a catalyst (Butyl lithium)
- •To prepred Ollifin and cyclopropen. (alkyl lithium)
- •Use in Industrial synthesis of Vitamin-A.[retinol/retinal/retinoic acid] (Acetylene lithium)
- •As a Tranquilizer drugs in Placidyl.(Acetylene lithium)
- •To adding a phenyl group in organic compounds. (Phenyl lithium)

Organoaluminium compound

Compounds containing bonds between carbon and aluminum bond.

Illustrative organoaluminium compounds are the dimer trialkylaluminium, $[R_3-Al]_2$

These compounds are mainly used for the production of polyolefins

History

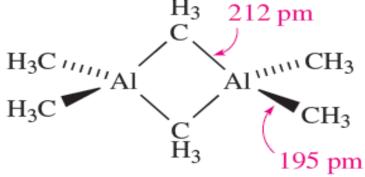
The first organoaluminium compound $(C_2H_4)_3Al_2I_3$ was discovered in 1859.

In 1950s, <u>Karl Ziegler</u> and <u>Colleagues</u> discovered of **trialkylaluminium** $[R_3-A1]_2$ compounds and applied these compounds as catalytic in olefin polymerization.

(Nobel Prize to Ziegler.)

Karl Waldemar Ziegler (November 26, 1898 – August 12, 1973) was a <u>German chemist</u> who won the <u>Nobel Prize in Chemistry</u> in 1963,

Trialkylaluminium compounds


The **trialkylaluminium** compounds are thus usually *dimeric* with a pair of <u>bridging</u> (3C-2e bond) alkyl legends,

```
Monomer : Al(CH_3)_3; Al(C_2H_5)_3
```

```
Dimer:
```

 $Al_2(CH_3)_4(\mu$ - $CH_3)_2$. trimethylaluminium, contains two Al centres, and six Methyl groups.

 $Al_2(C_2H_5)_4(\mu$ - $C_2H_5)_2$. triethylaluminium, contains two Al centres, and six ethyl groups.

Preparation [1] From alkyl halides and aluminium

Industrially, simple aluminum alkyls of the type Al_2R_6 (R = Me, Et) are prepared in

a two-step process beginning with the alkylation of aluminum powder:

 $2 \text{ AI} + 3 \text{ CH}_3\text{CH}_2\text{CI} \rightarrow (\text{CH}_3\text{CH}_2)_3\text{AI}_2\text{CI}_3$

The product, $(CH_3CH_2)_3Al_2Cl_3$, can be converted to the trialkyl aluminum derivatives by reduction:

```
2 (CH<sub>3</sub>CH<sub>2</sub>)<sub>3</sub>Al<sub>2</sub>Cl<sub>3</sub> + 6 Na \rightarrow (CH<sub>3</sub>CH<sub>2</sub>)<sub>6</sub>Al<sub>2</sub> + 2 Al + 6 NaCl
```

This method is used for production of trimethylaluminum and triethyl aluminium.

Preparation [2] Hydroalumination

Aluminum powder reacts directly with certain alkenes in the presence of hydrogen. The process entails two steps,

The first producing dialkylaluminium hydrides at 80°C Temperatures

```
3 \text{AI} + 3/2 \text{H}_2 + 6 \text{CH}_2 = \text{CH}2 \rightarrow [\text{HAI}(\text{CH}_2\text{CH})_2]_3
```

In a subsequent step, these hydrides are treated with more alkenes to effect hydro alumiunation:

2 $[HAI(CH_2CH)_2]_3$ + 6 CH_2 =CH2 \rightarrow 3 $[AI_2(CH_2CH_3)_6]$

Preparation[3] Trans metalation

(Laboratory preparations) (Buktone and Odaling Method)

The synthesis in the laboratory, including metathesis or transmetalation methods.

Metathesis of aluminium trichloride with R-Li gives the trialkylalluminium:

 $AICI_3 + 3 R-Li \rightarrow R_3AI + 3 LiCI$ R=Me, Et, Bu,

•Trans metalation at 80 to 90 C

 $2 \text{ AI} + 3 \text{ Hg}(\text{CH}_3)_2 \rightarrow [\text{AI}(\text{CH}_3)_3]_2 + 3 \text{ Hg}$

Preparation [4] From Alluminium Alloy

Synthesis of alkylaluminium by reaction of Megnesium -Alluminium alloy with Alkylhalide.

 $AI_2-Mg_3 + 6 \text{ R-CI} \rightarrow 2 \text{ R}_3AI + 3 \text{ MgCI}_2$

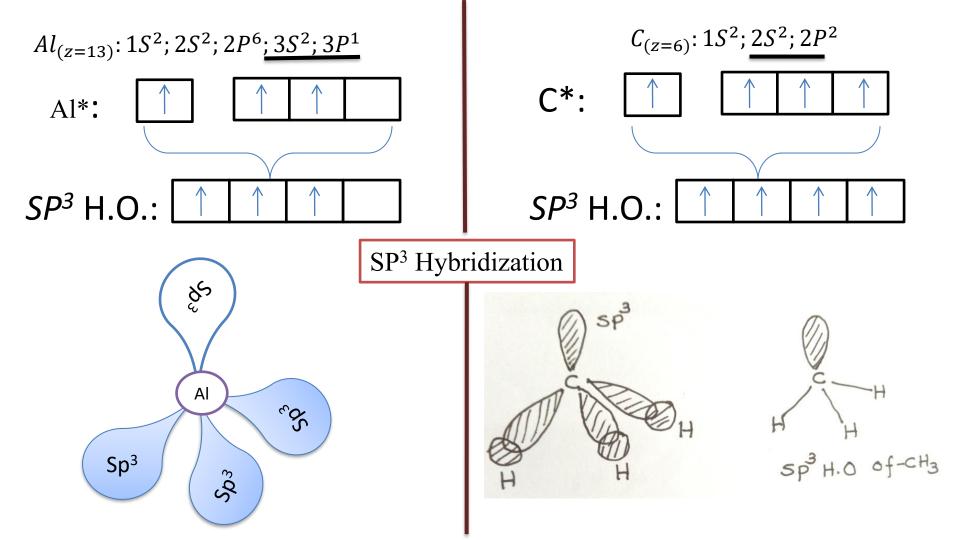
R=Me, Et,

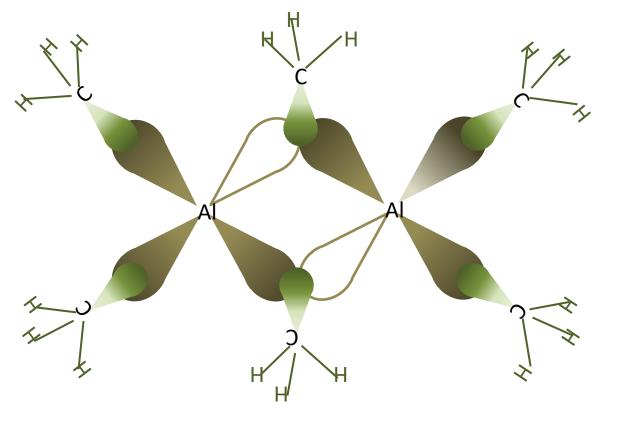
Properties:

➤Colorless liquid

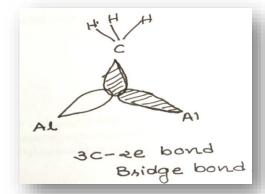
- >Trimethyl alluminium is dimar, $Al_2(CH_3)_4(\mu-CH_3)_2$
- ➢Soluble in Benzene solvant.
- ≻Liquid at room Temperature.
- ≻M.P.=15 C. and B.P.=126 C.
- ➢Spontaneously inflammable but reactive liquid.
- ➢ Reaction with air and water gives Hydrides and Oxides.

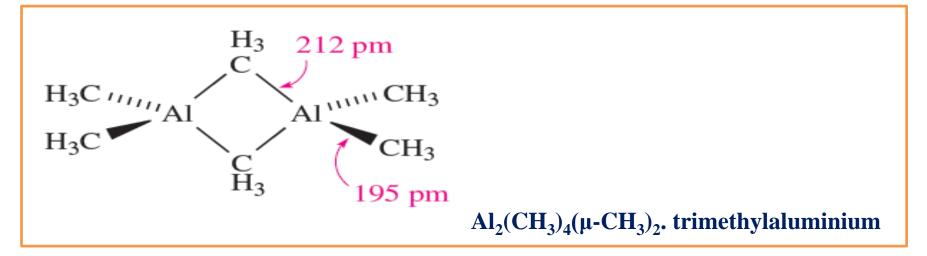
Bonding and Structure

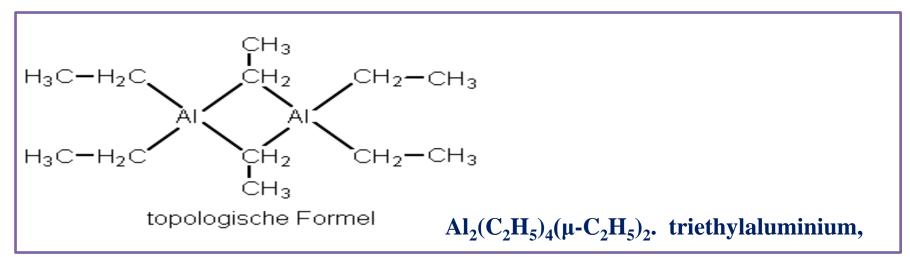



Contains two aluminium centres, and six <u>Methyl groups</u>.

Two methyl are bridge bonded.


• In these structures, each Al is **sp**³ hybridized and is bonded to four C atoms, but there are not enough electrons to assign a pair of electrons per chemical bond. Here, Al-C-Al is 3C-2e bridge bond.


• The four-coordinate Al prefers to be tetrahedral.



*Sp*³ *Hybrid orbitals of 'Al' and 'C'*

Uses of Alkyllalluminium:

>Al₂Et₆ and Al₂Me₆ used in Jet-fuels with Hydrocarbone.

>Al₂Bu₆ is used in Alkene exchange reaction.

>Al₂Et₆ is used as Catalyst (Ziegler) in Polymerization (<u>poly olefins</u>)

➢ For Preparation of Polithene and Alkoxi polimer.

