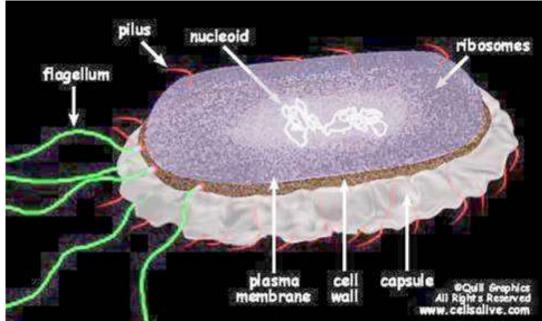
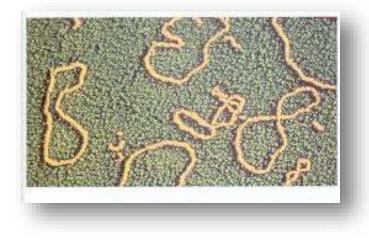
# GENOME ORGANIZATION IN PROKARYOTES


### Prokaryotes and Eukaryotes genome

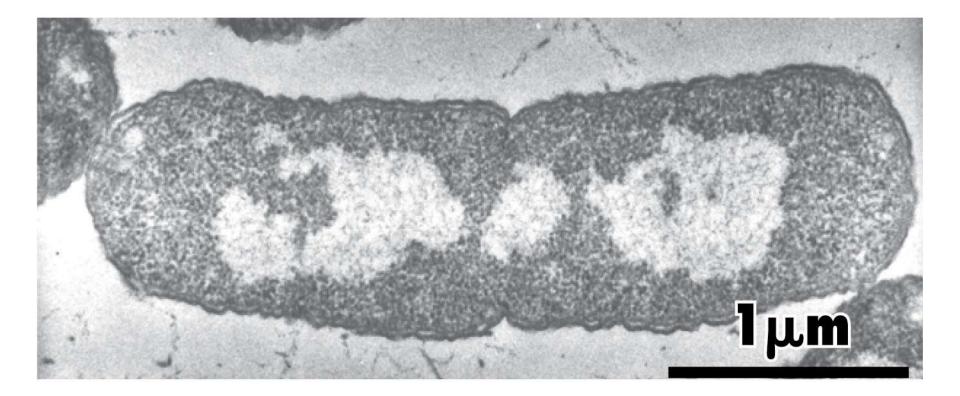
| Prokaryotes                               | Eukaryotes             |
|-------------------------------------------|------------------------|
| Single cell                               | Single or multi cell   |
| No nucleus                                | Nucleus                |
| One piece of circular DNA                 | Chromosomes            |
| No mRNA post transcriptional modification | Exons/Introns splicing |

#### **Prokaryotes**


> The genome of *E. coli* contains amount of 4X10<sup>6</sup> base pairs

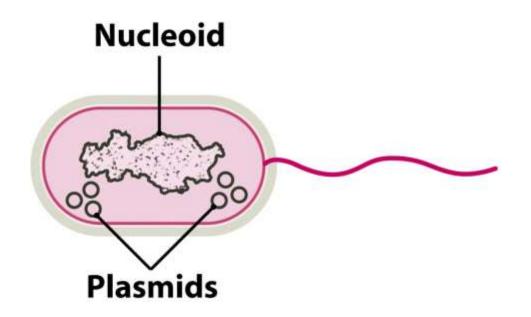
- Lacks a membrane-bound nucleus.
  - Circular DNA and supercoiled domain, **nucleoid**.
- > 90% of DNA encode protein
- Histones not present




- Prokaryotic genomes generally contain one large circular piece of DNA referred to as a "Chromosome" (not a true chromosome in the eukaryotic sense).
- Some bacteria have linear "chromosomes".
- Many bacteria have small circular DNA structures called plasmids which can be swapped between neighbors and across bacterial species.
- Some types of plasmid are able to integrate into the main genome, but others are thought to be permanently independent.
- Carry genes usually not present in the main chromosome mostly non-essential.






| Type of plasmid | Gene functions                                | Examples                                                                                                     |  |
|-----------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Resistance      | Antibiotic resistance                         | Rbk of Escherichia coli and other bacteria                                                                   |  |
| Fertility       | Conjugation and DNA transfer between bacteria | F of <i>E. coli</i>                                                                                          |  |
| Killer          | Synthesis of toxins that kill other bacteria  | Col of E. coli, for colicin production                                                                       |  |
| Degradative     | Enzymes for metabolism of unusual molecules   | TOL of Pseudomonas putida, for toluene metabolism                                                            |  |
| Virulence       | Pathogenicity                                 | Ti of Agrobacterium tumefaciens, conferring the ability to cause crown gall disease on dicotyledonous plants |  |

#### The *Escherichia coli* nucleoid: Transmission electron micrograph of dividing cell



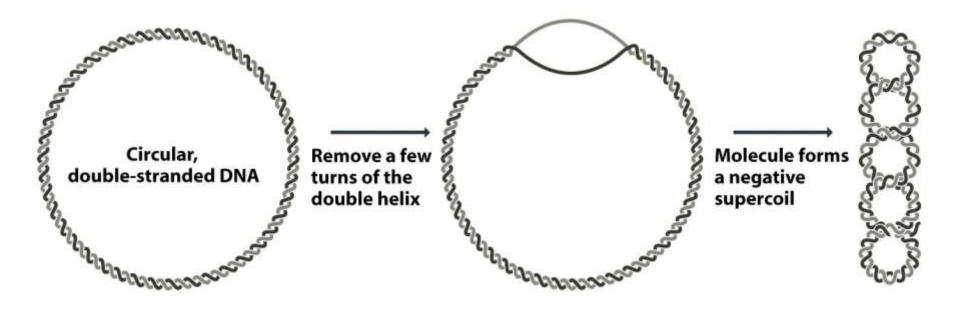
### Plasmid

- The term *plasmid* was first introduced by the American molecular biologist Joshua Lederberg in 1952.
- A **plasmid** is separate from, and can replicate independently of, the chromosomal DNA.
- Plasmid size varies from 1 to over 1,000 (kbp).



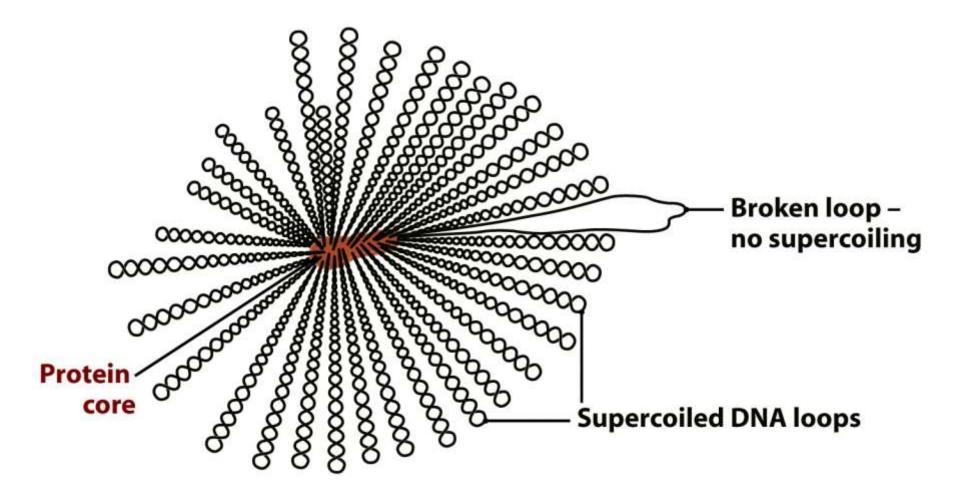
|                                      | Genome organization                                           |           |                 |  |
|--------------------------------------|---------------------------------------------------------------|-----------|-----------------|--|
| Species                              | DNA molecules                                                 | Size (Mb) | Number of genes |  |
| Escherichia coli K12                 | One circular molecule                                         | 4.639     | 4405            |  |
| <i>Vibrio cholerae</i> El Tor N16961 | Two circular molecules                                        |           |                 |  |
|                                      | Main chromosome                                               | 2.961     | 2770            |  |
|                                      | Megaplasmid                                                   | 1.073     | 1115            |  |
| Deinococcus radiodurans R1           | Four circular molecules                                       |           |                 |  |
|                                      | Chromosome 1                                                  | 2.649     | 2633            |  |
|                                      | Chromosome 2                                                  | 0.412     | 369             |  |
|                                      | Megaplasmid                                                   | 0.177     | 145             |  |
|                                      | Plasmid                                                       | 0.046     | 40              |  |
| Borrelia burgdorferi B31             | Seven or eight circular molecules,<br>eleven linear molecules |           |                 |  |
|                                      | Linear chromosome                                             | 0.911     | 853             |  |
|                                      | Circular plasmid cp9                                          | 0.009     | 12              |  |
|                                      | Circular plasmid cp26                                         | 0.026     | 29              |  |
|                                      | Circular plasmid cp32*                                        | 0.032     | Not known       |  |
|                                      | Linear plasmid lp17                                           | 0.017     | 25              |  |
|                                      | Linear plasmid lp25                                           | 0.024     | 32              |  |
|                                      | Linear plasmid lp28-1                                         | 0.027     | 32              |  |
|                                      | Linear plasmid lp28-2                                         | 0.030     | 34              |  |
|                                      | Linear plasmid lp28-3                                         | 0.029     | 41              |  |
|                                      | Linear plasmid lp28-4                                         | 0.027     | 43              |  |
|                                      | Linear plasmid lp36                                           | 0.037     | 54              |  |
|                                      | Linear plasmid lp38                                           | 0.039     | 52              |  |
|                                      | Linear plasmid lp54                                           | 0.054     | 76              |  |
|                                      | Linear plasmid lp56                                           | 0.056     | Not known       |  |

## E. coli chromosome


- Circular & supercoiled
- Circumference of 1.6 mm
- *E. coli* cell is just 1.0 2.0 µm

#### Supercoiling:

- Additional turns are introduced into the DNA double helix (positive supercoiling) or
- If turns are removed (negative supercoiling)
- Ideal way to package a circular molecule into a small space.
- Generated and controlled by DNA gyrase and DNA topoisomerase
  I.

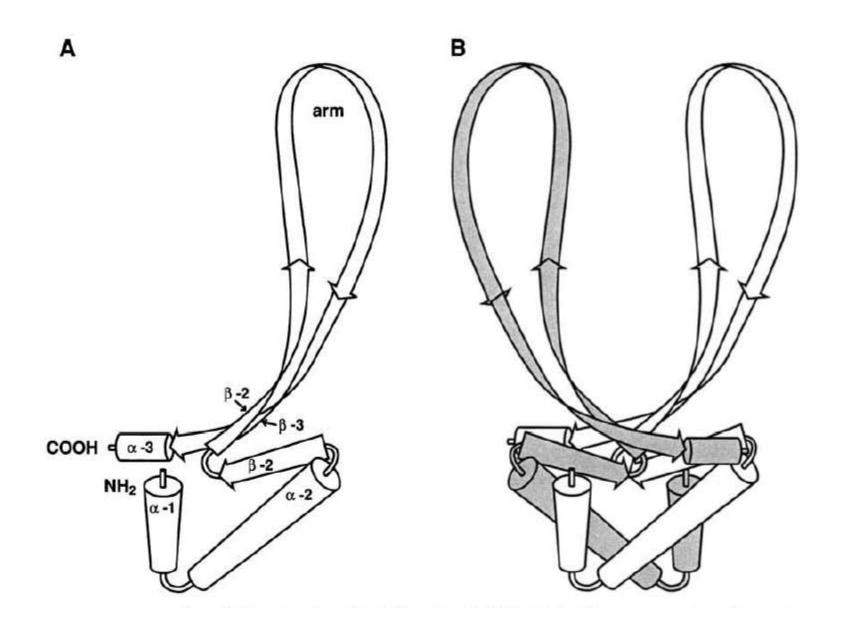

#### Supercoiling:

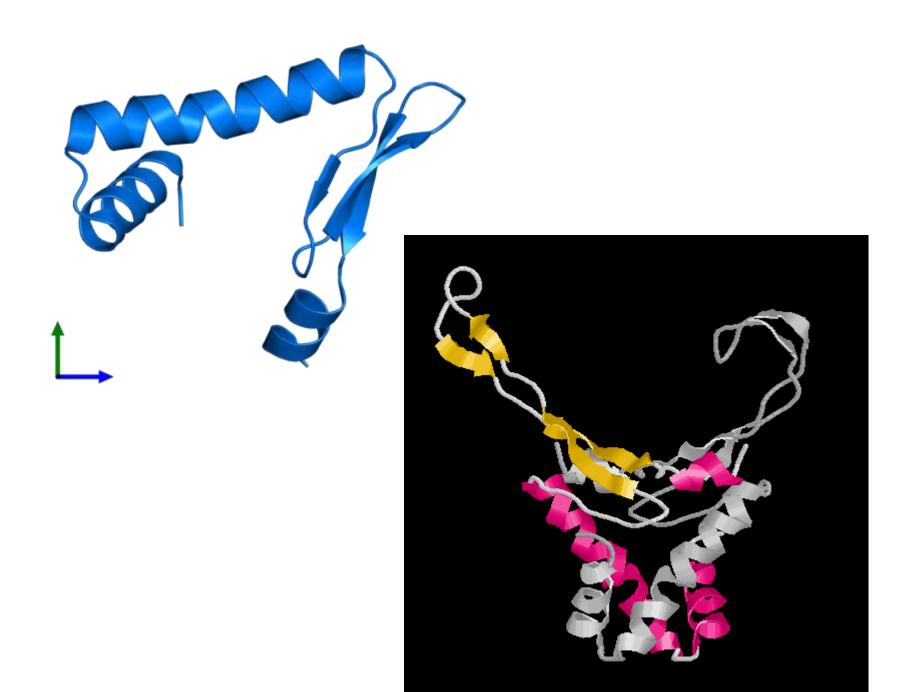
Underwinding a circular, doublestranded DNA molecule results in negative supercoiling.



## E. coli chromosome

- Studies of isolated nucleoids *E. coli* DNA molecule does not have unlimited freedom to rotate once a break is introduced.
- Bacterial DNA is attached to proteins that restrict its ability to relax.
- Break a single site results in loss of supercoiling from only a small segment of the molecule
- Proved by Experiments trimethylpsoralen to distinguish between supercoiled and relaxed DNA.





## E. coli chromosome

- E. coli DNA attached to a protein core from which 40-50 supercoiled loops (~100kbp each) radiate out into the cell.
- Protein component of the nucleoid includes DNA gyrase and DNA topoisomerase I.
- Most abundant packaging proteins is HU di/tetramer 60bp DNA
- 60000 HU in single cell of EC.
- Other H-NS may be involved in chromosome organization act alone / interact with the HU protein to organize the chromosome *in vivo*.

### **HU PROTEIN**

- Small basic protein of 18,000 daltons.
- Exists as a heterodimer of two nearly identical subunits (HU-1 and HU-2).
- Utilize coiling as a mechanism of DNA compaction.
- Wrapping DNA around HU proteins in prokaryotes or around histones in eukaryotes influences the level of DNA supercoiling and the amount of free energy potentially available for biological reactions.
- HU binds weakly to DNA rapidly dissociable binding advantageous most of the genome must be accessible.
- HU Bends DNA difficult to bent DNA fragments in absence of HU.





- In Archaea packaging proteins are much more similar to histones tetramer ~80bp DNA.
- Linear DNA
  - Borrelia burgdorferi
  - Streptomyces coelicolor
  - Agrobacterium tumefaciens
  - These chromosomes require terminal structures equivalent to the telomeres.
- Vibrio cholerae two circular DNA molecules one of 2.96 Mb and the other of 1.07 Mb - most of the genes for the central cellular activities are located on larger molecule
- Integron—a set of genes and other DNA sequences that enable plasmids to capture genes from bacteriophages and other plasmids