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Defination of a Ring : Suppose R is the non-empty set equipped with two binary operations

Called addition and multiplication and denoted by ‘' + “and .- respectively

i.e., Foralla,b eR

Then this is algebraic structure (R,+,. )iscalled a ring , if the following postulates are satisfied:

(1) Addition is associative
I.e., (a+b)+c = a+(b+c) Va,b,c € R

(2) Addition is commutative
ie.,atb=b+aVabeR
(3) There exist an element denoted by 0 on R such that
O+a=aV aeRr
(4) To each element a in R there exist an element -a in R such that
(-a)+a=0
(5) Multiplication is associative
i.e.,a.(b.c)=(a.b).cVab,ceRr
(6) Multiplication is distributive with respect to addition
i.e.,forall a,b,cinR
a.(b+c) = a.b+a.c (Left distributive law)
and (b+c).a =b.a+c.a (Right distributive law)

Defination of ring with unity :  If in. a ring R there exist an element denoted by 1 such that
1.a=a=a.1V a € R, Then R is called a ring with unit element.

The element 1 € R, is called the unit element of the ring.

Obviouly 1 is the multiplicative identity of R. Thus if a ring possesses multiplicative identity , then
it is a ring with unity.

Defination of commutative ring : If in a ring R, The multiplication composition is also
commutative i.e., we havea.b=b.aVab€eR, ThenRiscalleda commutative ring.

Defination of devision ring : A ring R is called a division ring if the set of non-zero elements of
R form a group under multiplication.



Theorem : If Ris a ring | Then for all abeceRr

1) a0=0a=0

2) al-b) = {ab) = {-alb
3) (-aN-b)=ab

4) a{b-c) = ab - ac

S) (b<la=ba-ca

Theorem : For elements a and b of a ring R and for integers m,neZ

1} n{as*b)=nasnb
2} {m+nja=ma+na
2) n{ma)=(nm)a

Theorem : For elements a and b of a ring R and for positive integers m and n

1) ama"=a™"
2) (@m)"=am™
If elements a and b are commutative , then
3) a™™=bma™
4) (ab)"=a"b"

Theorem : For elements a and b of a ring R and for a positive integer n,
a(nb) = n(ab) and (nb)a = n(ba)
Theorem : If a and b are commutative elements of a ring R, then for eachn € N

(a+b)"=a"+"c;a"'b+"c;a"?b?+ ..+ b"

n'

Where "¢, =

ri(n-rj!

Example : The set R consisting of a single element 0 with two binary operations defined by 0+0=0
and 0.0=0is a ring . This ring is called the null ring or the Zero ring .

Example : The set | of all integers is a ring with respect to addition and multiplication of integers
as the two ring composition. This ring is called The ring of integers .

Example : The set 21 of all even integers is a commutative ring without unity , the addition and
multiplication of integers being the two ring compositions . .
Example : The set Q of all rational numbers is a commutative ring with unity, the addition and
multiplication of rational numbers being the two ring compositions .

Example : The set R of all real numbers is a commutative ring with unity, the addition and

multiplication of real numbers being the two ring compositions .



Example : The set C of all complex numbers j

. a commutative ring wi :
multiplication of complex number- being Utative ring with unity,

the two ring composition .
Example : The set M n x n matrices with their e
complex numbers, integers) is a non commuta ‘
multiplication of matrices as the

the addition and

lements as real numbers ( rational numbers,

. tive ring with unity, with respect to addition and
two ring compositions,

Example : The set R={0,1,2,3,4,5)

IS @ commutative ring with “+e' X'
| e respect to ’ +¢ :
ring compositions. i Lo

In aning 1tis possible that the product of two non-zero elements is equal to the zero element.

eg.2%3=0
also the number of elements in R is finite

therefore this is an example of a finite ring .

Example : The set Z[i] = {a+bi / a,b € Z} is a commutative ring with unity under usual addition and
multiplication .

Example : (1) Aring R is commutative if a2 = a for each a € R.
(2) Aring R is commutative if a3 = a for each a € R.
Example : Q(V7)={a+b\/7 / a,b € Q} is a field under usual addition and multiplication.

Example : (Zp, +p, Xp) is a field for prime P.
Defination of zero divisor : A non-zero element of a ring R is called a zero divisor if there exists

an element b20 € R Such that either ab=0 or ba=0.

Rings without zero divisor :
elements of R is zero,

A ring R is without zero divisors if the product of two non-zero

i.e.if ab=0 = a=0orb=0

On the other hand if in a ring R there exist non-zero elements a and b such that ab=0, Then R is

said to be a ring with zero divisors.

M is a ring of all 2x2 matrices with their elements as integers, The addition

Example : Suppose ing compositions. Then M is a ring wi?h zero

and multiplication of matrices being the two r

divisors.

Example : The ring ({0,1,2,3,4,5}, 6, xg) is a ring with zero divisors.

We have 2x63=0, 3x64=0

i.e. The product of two non-zero integers can not be equal to the zero INtegers.



Cancelation lawsinaring: IfR | -
4 ISarnng thenRis an abelian Broup with respect to addition

For addition composition The cancellation laws hold in all i
¢ ngs

Therefore the question of cancellation laws holding

composition. N a ring arises only for the multiplication

We say that cancellation laws hold in a rng Rif az0 , ab=ac - |
) - - N |

.'\nd ato . h\‘ =Ca = l\f C Wh(\r(\ n.l) Ce l{

Theorem : A ring R is wi sora divi -
& Ris without zero divisors if and only if the cancellation laws hold in R

i.e. Ris without zero divisors & Cancellation laws hold in R.

Defination of in t Aringis i
! tegra] (.10main t Aring is called an integral domain if it (1) is commutative , (2) has
unit element, (3) is without zero divisors.

Defination of inversible element in a ring with unity : In aring every element possesses inverse.
Therefore the question of an element being inversible or notarise only with respect to multiplication.

lbe is :-t))ring with unity , Then an element a€R is called inversible , if there exist beR sach that
ab=1=ba.

Also then we write b=a1.
Defination of field : A ring R with at least two elements is called a field if it (1) is commutative,,
(3) Has unity, (3) is such that each non-zero element possesses multiplicative inverse.

Example : The ring of rational numbers (Q, +,x) is a field since it is a commutative ring with unity
and each non-zero element is inversible.

({0,1,2,3,4,5}, +s, Xs) is an example of a finite field.

Examples : (1) 1 and -1 are the only two inversible elements of the ring of all integers.

eal numbers as elements are the only inversible elements

(2)nxn non-singular matrices withr
lements as real numbers.

of the ring of all nxn matrices with e

Theorem : A non-zero element [m] of ring (Zn, +n, xn) is a zero divisor iff m and n are not relatively

prime.
x,) has no zero divisor.

Corollary : For given prime p, The ring (Zp, +»p,
Theorem : A field is an integral domain. {
Theorem : A finite integral domain is a field.

Theorem : A finite division ringisa field.

Theorem : A non-empty subset K of a field Fisa subfield of Fiff
1) a-beK for a,beK and

2) ableKfor a,b#0€eK.



| Division ring or skew field

A ring R with at least two elements is calleqd a division r

Ing or skew field if it (1 has uni '
such that each non zero element possessec multiplicati o)

Ve inverse.

NQTE: Every field is also a division ring but a division ring is a field if it is also commutative

THEOREM: Every field is an integral domain.
THEOREM: A skew field has no divisors of zero.
THEOREM: A finite commutative ring without zero divisors isafield. OR

Every finite integral domain is a field.

EXAMPLE:

1) ¥ ab,c,d are elements of a ring R then evaluate (a+b)(c+d).

2) Prove that if 3,b € R then (a+b)*=a’+ab+ba+b? where by x* we mean xx.

3) i a,b are any elements of a ring R prove that

a. (-a)=a
b. -(a+b)=-a-b
c. -(a-b)=-a+b

4) if a,b,c,d are any elements of aring R prove that

(a-b)(c-d)=(ac+bd)-(ad+bc).

S) i Ris a system satisfying all the conditions for a ring with unit element with the possible
exception of a+b=b+a prove that the axiom a+b =b+a must hold in R and that R is thus a

ring.
6) If Ris a ring such that a’=a for all a € R prove that

a. a+a=0for all a € Ri.e each element of Ris its own additive inverse.

b. a+b=0 - a=b.

Cc. Ris a commutative ring.



7) Prove that the set M of )x) matrices over the

i
1eld of rea) numbers is a ring with respect to
mmut

matrix . addition and Multiplication i< it aco ative rj i |
rero element does this ring possecc 2ero divisor? et pod e

g) Do the following sets form integral dom

. ains with respect . .
multiplication If 5o state if they are fields pect to ordinary addition and

2. The set of numbers of the form by? with b rational
b. The set of even integers.
€. The set of positive integers.

a) Show that the set of numbers of the form a+bv2 with a and b as rational numbers is a field.

10) Prove that the set I(V2)of all real numbers of the form a+bv2 with a and b as integers is an
integral domain with respect to ordinary addition and multiplication is it a field?

11) A Gaussian integer is a complex number a+ib where a and b are integer. Show that the set
J[i] of Gaussian integers forms a ring under ordinary addition and multiplication of complex
numbers is it an integral domain is it a field ?

12) Prove that the totality R of all ordered pairs
(a,b) of real numbers is a commutative ring with zero divisors under the addition and

multiplication of ordered pairs defined as
a) (a,b)+(c,d)=(a+c,b+d)
b) (a,b)(c,d)=(ac,bd) for all (a,b)(c,d) €R.

13)Let C be the set of the ordered pairs (a,b) of real numbers. Define addition and
mudtiplication in C by the equation

a) (a,b)+(c,d)=(a+c,b+d)
b) (a,b)(C,d)z(ac-bd,bc+ad)

Prove that C is a field.

al valued continuous functions defined in the closed interval

14) Show that the set R of all re t to the addition and multiplication of

(0,1) is a commutative ring with unity with respec
functions defined pointwise as follows:

a) (f+g)(x)=f(x)+g(x)



b) & (fe)x)=F(x)g(x) where f.g are any two members of R
15) Give an example of a skew field which is not a field

16) let pbe @ prime number prove that the set of integers l, 1,-{0,1,2,3 p 1} forms a field
with respect to addition and multiplication modulo p. -

17) Prove that the set of residue classes modulo p is a commutative ring with respect to
addition and multiplication of residue classes further show that the ring of residue classes
modulo p is a field if and only if p is prime.

[somorphism of rings

A ring R is said to be isomorphic to another ring R’ if there exists a one-one mapping fof R
onto R such that

fla+b)=f(a)+f(b),f(ab)=Ff(a)f(b) for all a,b € R.
Also such a mapping f is said to be an isomorphism of R onto R".

(. if aring Ris isomorphic to another ring R’ we shall write in symbols R=R.

Il.  Also R’ is said to be an isomorphic image of R.

Example:

1. Let R be the ring of integers under ordinary addition and multiplication. Let R’ be the set of

all even integers let us define multiplication in R" to be denoted by ‘@’ by the relation

a®b=ab/2
Where ab is the ordinary multiplication of two integers a and b.

. Prove that(R',+, ®) is a commutative ring where + stands for ordinary addition of

integers.
il.  Prove that R is isomorphic to R

.  What acts as the unit element of R'?

Properties of isomorphism of rings

Theorem: If f is an isomorphism of a ring R onto a ring R’ then



The image of the zero of R is the zero of R

The image of the negative of an element of R i¢ the n
e

e f(-a)=t (a)forallaeR. Bative of the Image of that element

if R is commutative ring then R is also 3 Commutative ring

4 ! Ris without zero divisors then R is also without zero divisors
¢ If Riswithunitelement then R’ is also with unit element

& I Risa field then R is also a field.

5 1f Ris a skew field then R is also a skew field.

Transference of ring structure

Theorem: If f is an one-one mapping of a ring R anto a set R with two compositions denoted
additively and multiplicatively such that f(a+b)=f(a)+f(b),f(ab)=f(a)f(b) for all a,b € R then the set
R’ is a ring for the two compositions.

Subring

Let R be a ring A non empty subset S of the Ris said to be a subring of R if S is closed with

respect to the operations of addition and multiplication in R and S itself is a ring for these

operations.

Conditions for a subring:

The necessary and sufficient conditions for a non empty subset S of a ring R to be a subring of Rare

1. aeS,bes=»a-beS

2. abeS=>abe$S

Theorem: The intersection of two subrings is a subring.

Theorem: An arbitrary intersection of subrings is a subring.

f subring which contain a given subset M of a ring Ris the

Theorem: The intersection of the family 0
smallest subring containing the subset M.




examples:

he set of integers is a subring of the ring of rational numbers

The set of all mxm matrices over the field of rational number is a subring of all mxm
matrices over the field of real numbers.

Let R be the ring of all 2x2 matrices over the field of real numbers.Let M be a subset of R

.

and let the elements of M be matrices of the type [‘; g] then M is a subring of R.

¢ Show that the set of matrices[g 2] is a subring of the ring of 2x2 matrices with integral
elements.

5 Let R be thering of integers let m be any fixed integer and let S be any subset of R such that
= {.....,—3m,-2m,—m,0,m,2m,3m, ....... }then S is a subring of R.

Subfields: .

Let F be a field.A non empty subset K of the set F is said to be a subfield of F if K is closed with

respect to the operations of addition and multiplicationin F and K itself is a field for these

operation.

Theorem: The necessary and sufficient conditions for a non empty subset K of a field Ftobe a

subfield of F are
1. aeKbeK=abeK

2. 3eK0+be K=ab™ € OK
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