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Defination of a Ring : Suppose R is the non-empty set equipped with two binary operations Called addition and multiplication and denoted by' +and 
i.e. , For all a,b e R 

Then this is algebraic structure (R,+,.)is called a ring, if the following postulates are satisfied: 
(1) Addition is asSociative 

i.e., (a+b)+c = a+(b+c) Va,b,c E R 
(2) Addition is commutative 

i.e., a+b = b+a a,b ¬ R 

(3) There exist an element denoted by 0 on R such that 

0+a =a taeR 

(4) To each element a in R there exist an element -a in R such that 

(-a) + a =0 

(5) Multiplication is associative 

i.e. , a.(b.c) = (a.b).c a,b,ceR 

(6) Multiplication is distributive with respect to addition 

i.e., for all a,b,c in R 

a.(b+c) = a.b+a.c (Left distributive law) 

respectively 

and (b+c).a = b.a+tC.a (Right distributive law) 

Defination of ring with unity : If in. a ring R there exist an element denoted by 1 such that 
1.a=a=a.1 Va¬R, Then R is called a ring with unit element. 

The element 1 ER, is called the unit element of the ring. 

Obviouly 1 is the multiplicative identity of R. Thus if a ring possesses multiplicative identity , then 
it is a ring with unity. 

Defination of commutative ring : If in a ring R, The multiplication composition is' a<so 
commutative i.e. , we have a.b = b.a a,b E R, Then R is called a commutative ring. 

Defination of devision ring: A ring R is called a division ring if the set of non-zero elements of 
R form a group under multiplication. 



Theorem: If R is a ring, Then for all a,b,c e R 
1) a0=0.a -0 
2) a(b)= {ab) = (a)b 
3) (-a-b) ab 

4) a(b-c) = ab -ac 
5) (b-ca = ba -ca 

Theorem: For elements a and b of a ring R and for integers m,neZ 
1) n(a+b)=na+nb 
2) (m+n)a=ma+na 
3) n(ma)-(nm)a 

Theorem: For elements a and b of a ring R and for positive integers m and n 
1) ama = amen 
2) (am)r = amn 

If elements a and b are commutative, then 
3) a"bm = bmam 
4) (ab)= a"b 

Theorem:For elements a and b ofa ring R and for a positive integer n, 

a(nb) = n(ab) and (nb)a = n(ba) 

Theorem :tf a and b are commutative elements of a ring R, then for eachn¬N 

(a+b)" = an + "ci a 'b + "c an2b+... + bn 

Where c = 
n! 

r'(n-r)! 

Example : The set Rconsisting of a single element O with two binary operations defined by 0+0-0 
and 0.0-0 is a ring. This ring is called the null ring or the Zero ring. 
Example: The set I of all integers is a ring with respect to addition and multiplication of integers 
as the two ring composition. This ring is called The ring of integers. 

Example: The set 21 of all even integers is a commutative ring without unity , the addition and 

multiplication of integers being the two ring compositions . 

Example: The set Q of all rational numbers is a commutative ring with unity, the additioH and 

multiplication of rational numbers being the two ring compositions. 

Example : The set R of all real numbers is a commutative ring with unity, the addition and 

multiplication of real numbers being the two ring compositions. 



Example: The set C of all complex numbers is a commutative ring with unity, the addition and multiplication of complex numbers being the two ring composition . 
Example : The set Mn Xn matrices with their elements as real numbers ( rational numbers, complex numbers, integers) is a non-commutative ring with unity, with respect to addition and multiplication of matrices as the two ring compositions. 
Example: The set R={0,1,2,3,4,5} is a commutative ring with respect to 't6' and x6 as the two ring compositions. 

In a ringit is possible that the product of two non-zero elements is equal to the zero element. 
e.g. 2 x6 3 = 0 

also the number of elements in R is finite 

therefore this is an example of a finite ring. 

Example:The set z[i] = {a+bi/ a,b e Z) is a commutative ring with unity under usual addition and 
multiplication . 

Example : (1) A ring R is commutative if a? = a for each a ¬ R. 

(2) A ring R is commutative if a = a for eacha¬R. 

Example : Q(V7)={a+by7/ a,b¬ Q) is a field under usual addition and multiplication. 
Example :(Zp, tp, xp) is a field for prime P. 
Defination of zero divisor: A non-zero element of a ring R is called a zero divisor if there exists 

an element bz0¬R Such that either ab=0 or ba=0. 

Rings without zero divisor : A ring R is without zero divisors if the product of tWo non-zero 

elements of R is zero, 

i.e. if ab=0 ’ a=0 or b=0 

On the other hand if in a ring R there exist non-zero elements a and b such that ab=0, Then R is 

said to be a ring with zero divisors. 

Example: Suppose M is a ring of all 2x2 matrices with their elements as integers, The addition 

and multiplication of matrices being the two ring compositions. Then M is a ring 

divisors. 

Example: The ring ({0,1,2,3,4,5), t6 , X6) is a ring with zero divisors. 

We have 2x63=0, 3x64-0 

1.e. The product of two non-zero integers can not be equal to the zero integers. 

zero 



Cancelation laws in a ring : If R is a ring then R is an abelian group with respect to addition. For addition composition The cancellation laws hold in all rings. 
Therefore the question of cancellation laws holding in a ring arises only for the multiplication composition. 

We say that cancellation laws hold in a ring R if az0, ab=ac h=c 
And a0, ba=ca h=c Where a,b,c ¬ R 

Theorem: A ring R is without zero divisors if and only if the çancellation laws hold in R 
ie. R is without zero divisors > Cancellation laws hold in R. 

Defination of integral domain : A ring is called an integral domain if it (1) is commutative, (2) has 
unit element, (3) is without zero divisors. 

Defination of inversible element in a ring with unity: In a ring every element possesses inverse. 

Therefore the question of an element being inversible or not arise only with respect to multiplication. 
If R is a ring with unity , Then an element aER is called inversible , if there exist bER Ssach that 
ab=l=ba. 

Also then we write b=a1, 

Defination of field: A ring R with at least two elements is called a field if it (1) is commutative, 
(3) Has unity, (3) is such that each non-zero element possesses multiplicative inverse. 

Example: The ring of rational numbers (Q,+,x) is a field since it is a commutative ring with unity 
and each non-zero element is inversible. 

({0.1,2,3,4,5}, +s, X$) is an example of a finite field. 

Examples: (1) 1 and -1 are the only two inversible elements of the ring of all integers. 

(2)nxn non-singular matrices with real numbers as elements are the only inversible elements 

of the ring of all nxn matrices with elements as real numbers. 

Theorem: A non-zero element [m] of ring (Zn, tn, Xn) is a zero divisor iff m andn are not relatively 

prime. 

Corollary: For given prime p, The ring (Zp, tp, X,) has no zero divisor. 

Theorem: A field is an integral domain. 

Theorem: A finite integral domain is a field. 

Theorem: A finite division ring isa field. 

Theorem: A non-empty subset K of a field F is a subfield of F iff 

1) a-beK for a,bEK and 

2) ablEK for a,b+0EK. 



Division ring or skew field 
A ring R with at least two elements is called a division ring or skew field if it (1)has unity.(2) is Cuch that each non zero element poSsesses multiplicative inverse. 

NOTE: Every field is also a division ring but a division ring is a field if it is also commutative. 
THEOREM: Every field is an integral domain. 

THEOREM: A skew field has no divisors of zero. 

THEOREM: A finite commutative ring without zero divisors is a field. OR 

Every finite integral domain is a field. 

EXAMPLE: 
1) tf a,b,c,d are elements of a ring R then evaluate (a+b)(c+d). 
2) Prove that if a,b e R then (a+b)'=atab+ba+b where by x we mean xx. 

3) f a,b are any elements of a ring R prove that 

a. (-a)=a 

b. (a+b)= -a-b 

C. -(a-b)= -a+b 

4) tfa,b,c,d are any elements of aring R prove that 

(a-b)\c-d)=(ac+bd)-(ad +bc). 
5) IfR is a system satisfying all the conditions for a ring with unit element with the possible 

exception of a+b=b+a prove that the axiom atb =bta must hold in R and that R is thus a 

ring. 

6) fRis a ring such that a'=a for all a eR prove that 

a. ataz0 for all a e Ri.eeach element of R is its own additive inverse. 

b. a+b=0’ a=b. 

C. R is a commutative ring. 



Prove that the set Mof Zx2 matrices over the field of real numbers is a ring with respect to matrix , addition and multiplication is it a commutative ring with unity element? Find the zero element does this ring possess zero divisor? 
Si Do the following sets form integral domains with respect to ordinary addition and multiplication? f so state if they are fields. 

The set of numbers of the form bv2 with b rational. 
b. The set of even integers. 
c. The set of positive integers. 

9) Show that the set of numbers of the form a+bv2 with a and b as rational numbers is a field. 
10) Prove that the set I(V2)of all real numbers of the form a+bv2 with a and b as integers is an 

integral domain with respect to ordinary addition and multiplication is it a field? 

11) A Gaussian integer is a complex number atib where a and b are integer. Show that the set 
J[i] of Gaussian integers forms a ring under ordinary addition and multiplication of complex 
numbers is it an integral domain is it a field ? 

12) Prove that the 

a) (a,b)+(c,d)=(a+c,b+d) 

b) (a,b)\(c,d)=(ac,bd) for all (a,b)(c,d) e R. 

a) (a,b)+{c,d)=(a+c,b+d) 

totality 
(a,b) of real numbers is a commutative ring with zero divisors under the addition and 
mutiplication of ordered pairs defined as 

b) (a,b\c,d)=(ac-bd,bc+ad) 

Prove that C is a field. 

R of 

13) Let C be the set of the ordered pairs (a,b) of real numbers. Define addition and 

multiplication in C by the equation 

a) (f+g\x)=f(x)+g(x) 

all ordered pairs 

14) Show that the set R of all real valued continuous functions defined in the closed interval 

(0,1] is a commutative ring with unity with respect to the addition and multiplication of 

functions defined pointwise as follows: 



M. 

15) Give an example of a skew field which is not a field. 

b) &(fg\x)=f(x)e(x) where f.g are any two members of R 

16) Let p be a prime number prove that the set of integers l, lo- (0,1,2,3,...p 1) forms a field 
with respect to addition and multiplication modulo p. 

17) Prove that the set of residue classes modulo p is a commutative ring with respect to 
addition and multiplication of residue classes further show that the ring of residue classes 
modulo p is a field if and only if pis prime. 

Isomorphism of rings 

1. 

A ring R is said to be isomorphic to another ring R if there exists a one-one mapping f of R 
onto R` such that 

1. 

f(a+b)=f(a)+f(b),f(ab)=f(a)f(b) for all a,b e R. 

Also such a mapping f is said to be an isomorphism of R onto R'. 

tfa ring R is isomorphic to another ring R' we shall write in symbols RR. 

Example: 

Also R' is said to be an isomorphic image of R. 

1 Let R be the ring of integers under ordinary addition and multiplication. Let R` be the set of 

all even integers let us define multiplication in R` to be denoted by ' ' by the relation 

aDb=ab/2 

Where atb is the ordinary multiplication of two integers a and b. 

Prove that(R,+, D) is a commutative ring where + stands for ordinary addition of 

integers. 

Prove that R is isomorphic to R`. 

What acts as the unit element of R'? 

Properties of isomorphism of rings 
Theorem: If f is an isomorphism of a ring R onto a ring R' then 



1. The image of the e zero of R is the zero of R 

2 
of the negative of an element of R is the negative of the image of that element ie. f(a) =f (a) for all a e R. 

The image 

,#RiS commutative ring then R is also a commutative ring. 

.Ris without zero divisors then R is also without zero divisors. 

HRiS with unit element then R is also with unit element. 

6. f R is a field then R' is also a field. 

7 R0S a skew field then R' is also a skew field. 

Transference of ring structure 
Theorem: tf f is an one-one mapping of a ring R onto a set R with two compositions denoted 
additively and multiplicatively such that f(a+b)=f(a)+f(b),f(ab)=f(a)f(b) for all a,b eR then the set 
R° is a ring for the two compositions. 

Subring 
Let R be a ring A non empty subset S of the R is said to be a subring of R if S is closed with 

respect to the operations of addition and multiplication in R and S itself is a ring for these 

operations. 

Conditions for a subring: 
Ihe necessary and sufficient conditions for a non empty subset S of a ring R to be a subring of R are 

1. aeS, besa-beS 

2. a,be S’ ab eS 

Theorem: The intersection of two subrings is a subring. 

Theorem: An arbitrary intersection of subrings is a subring. 

Theorem: The intersection of the family of subring which contain a given subset M of a ring R is the 

Smallest subring containing the subset M. 



Examples: 
The set of integers is a subring of the ring of rational numbers. 

The set of all I mxm matrices over the field of rational number is a subring of all mxm 

matrices over the field of real numbers. 

.lat R be the ring of all 2x2 matrices over the field of real numbers.Let M be a subset of R 

and let the elements of M be matrices of the type then M is a subring of R. 

4. Show that the set of matrices| 

elements. 

Subfields: 

5. Let R be the ring of integers let m be any fixed integer and let S be any subset of R such that 

s= {....3m,-2m,-m,0,m, 2 m,3m,.... then S is a subring of R. 

0 

is a subring of the ring of 2x2 matrices with integral 

Let F be a field.A non empty subset K of the set F is said to be a subfield of F if K is closed with 

respect to the operations of addition and multiplication in F and K itself is a field for these 

operation. 

1. ae K,b e Ka-b e K 

Theorenm: The necessary and sufficient conditions for a non empty subset K of a field F to be a 

subfield of F are 

2. ae K,0+b e Kab e OK 
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